
CHAPTER 3

A First Encounter:
Getting Your Hands on a 9900 31

1•1-AseisVOMMIPOIN

PURPOSE/
WHERE TO BEGIN

A First Encounter:
Getting Your Hands on a 9900

PURPOSE

Remember the common saying, "What you've always wanted to know about subject X,
but were always afraid to try." The same applies, and probably especially so, to persons
who have contact with the world of digital electronics; who have heard about computers
and minicomputers and•even operated them; who have seen and experienced the
advances made in the functional capabilities and low cost of digital integrated circuits by
owning and operating handheld calculators; who have worked around and even built
electronic equipment; who have heard about microprocessors and their amazing
capabilities — but have not tried them.

i■ 3 	If you are one of these people, this chapter is for you, for in it we want to help you try
out a microprocessor, work it together, operate it, have success with it. In this way we
hope to demonstrate that microprocessor systems are not that difficult to use. That, even
though they require an understanding of a new side of electronic system design —
"software" — if a base of understanding is established, and if an engineering approach is
followed, there is no need to fear getting involved.

So that's the purpose of this first encounter — to get your hands on a 9900
microprocessor system and operate it.

WHERE TO BEGIN

It would be very easy to be satisfied with a paper example for a first encounter,
however, it has been demonstrated that a great deal more is learned by actually having
the physical equipment and doing something with it. Therefore, this first encounter
example requires that specific pieces of equipment be purchased.

However, the purchase is not to be in vain. The first encounter has been chosen so that
is may be followed with more extensive applications described in Chapter 9.
Applications that will help to bring understanding of the 9900 microprocessor system to
the point that actual control applications, akin to automating an assembly line, can be
implemented. Outputting control of ac and dc voltage for motors or solenoids and
producing controlled logic level signals are examples. In this way, useful outcomes are
being accomplished, the equipment is being expanded, and problem solutions are
demonstrated. At all times, of course, the base foundation of knowledge about
microprocessor systems is growing.

To get underway then, purchase the following items from your industrial electronics
distributor that handles Texas Instruments Incorporated products.

3-2 	 9()O0 FANNIN SYSTENIS DESIGN

A First Encounter:
Getting Your Hands on a 9900

WHAT YOU HAVE

Quantity 	Part # 	 Description

1 	TM990/ 100M-1 	TMS9900 microcomputer module with TIBUG
(Assembly No. 	monitor in two TMS 2708 EPROM's and EIA
999211-0001) 	or TTY serial I/O jumpers option.
(see Figure 3-1)

1 	TM990/301 	Microterminal
(see Figure 3-2)

1 	TIH431121-50 or 	100 pin, 0.125" c-c, wire-wrap PCB edge
Amphenol 225-804-50 connector (or equivalent solder terminal

or 	 unit)
Viking 3VHSO/9N05

or Elco
00-6064-100-061-001

1 	TIH421121-20 or 	40 pin, 0.1" c-c, wire-wrap PCB edge connector
Viking 3VH20/1JND5 (or equivalent solder terminal unit)

In addition, some small electronic parts to interconnect the light emitting diode displays
that will be used will be needed. These are listed later on so you may want to continue to
read further before purchasing the module and microterminal so that all necessary parts
can be obtained at the same time.

WHAT YOU HAVE

In Figure 3-3 is shown a generalized computer system, it has a CPU (central processing
unit) which contains an arithmetic and logic unit (ALU), all the control and timing
circuits, and interface circuits to the other major parts. It has a memory unit. It has some
peripheral units for inputting data such as tape machines, disk memories, terminals and
keyboards. It has output units such as printers, CRT screens, tape machines, disk
memories.

The TM990/ 100M-1 microcomputer shown in Figure 3-1 is a miniature version of this
computer system as shown in Figure 3-4. It has a CPU centered around the TMS9900
microprocessor, a memory unit — in this case a random access memory (RAM) and a
read only memory (ROM). It does not have the input/output units indicated in Figure 3-3
but it does have circuitry (TMS9901, 9902) for interface to such units. The TMS9901
will handle parallel input/output data and single bit addressed data as will be shown in
this first encounter. The TMS9902 handles serial input/output data interface either
through a TTY interface. A more complete interconnection of the components of the
microcomputer is shown in the block diagram of Figure 3-5. The physical position of
these units on the board is identified in Figure 3-1.

31

9900 FAMILY SYSTEMS DESIGN 	 3-3

Figure 3-1. Till 990/100M-1 Microcomputer

i■
 TIM

 9
9
0
4
 C

L
O

C
K

1
...

.
T

M
S

 9
9

0
1

 P
A

R
A

LL
E

L
I /
0
 C

O
N

T
R

O
LL

E
R

WHAT YOU HAVE A First Encounter:
Getting Your Hands on a 9900

3-4 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

GETTING IT TOGETHER

Figure 3-2. TM 990/301 Microterminal

Just think, a complete microcomputer with: 1) 256 16-bit words of random access
memory to hold program steps and program data, expandable to 512 words; 2) 1024 16-
bit words of read only memory which contains pre-programmed routines (TIBUG
Monitor) that provides the steps necessary for the TM990/100M-1 microcomputer to
accept input instructions and data and to provide output data. This ROM capability can
be expanded to 4096 words to provide program flexibility; 3) input/output interface
that can handle 16 parallel lines expandable to 4096 and an interface for serial characters
of 5-8 bits at a programmable data rate; 4) an input terminal to input the sequence of
steps to solve a problem — the program.

GETTING IT TOGETHER

Of course, in order to operate the microprocessor system, it must be put together. It
must be interconnected.

What function will it perform? The first encounter application is shown in Figure 3-6. The
4111K microcomputer will be used to provide basic logic level outputs to turn on and off, in

sequence, light emitting diode segments of a 7 segment numeric display element, the
TIL303. This will demonstrate the "software" techniques used to provide de logic
levels at the I/O interface which through proper drivers can later be used to control
solenoids, motors, relays, lights, etc.

In the first encounter application, the microterminal shown in Figure 3-2 will be used to
input the instructions and data required to perform the function.

3 1

9900 FAMILY SYSTEMS DESIGN 	 3-5

GETTING IT TOGETHER A First Encounter:
Getting Your Hands on a 9900

Recall that a light emitting diode (LED) is made of semiconductor material and emits
light when a current is passed through it in the correct direction. Each segment of the
7-segment display is a separate LED. Four segments of the display will turn on in the
sequence f, b, e, c at a slow or a fast rate depending on the position of a switch, as shown
in Figure 3-6. Each segment will first be turned on, then a short delay, then off, then a
short delay. The sequence is continued with the next segment; proceeding around
through 4 segments and then starting over again. The rate is varied by changing the
delay in the sequence. The switch position controls the delay.

A 7-segment display is used because of its ready availability and its dual-in-line package.
Only 4 of the segments will be programmed into the sequence although driver capability
will be provided for 6 segments. This allows flexibility for the person doing the first
encounter to experiment on their own to include the remaining 2 segments. A next step
would be to provide an additional driver. In this way all 7 segments of the display can be
included.

Here's what's required to provide the segment display. Figure 3-7 shows the integrated
circuit driver package for the LED segments, the SN74H05N. The physical package
and a schematic are shown. It contains 6 open collector inverters, each capable of
"sinking" 20 ma. A 14- or 16-pin dual-in-line socket is required. A wire-wrap one is
shown. However, it could be a solder terminal unit just as well.

Figure 3-8 shows the 7-segment display physical package and schematic and a 14- or 16-pin
DIP socket for interconnection. 100 ohm resistors for limiting current through the
LEDs are also required.

CPU

AL U
ARITHMETIC

AND
LOGIC UNIT

Om*

CONTROL AND
CENTRAL TIMING

MEMORY

INPUT OUTPUT

Figure 3-3. Generalized Computer

3-6 	 9900 FAMILY SYSTEMS DESIGN

ROM
(EPROM)
1K X 16

CPU

RAM
256 X 16

SERIAL INPUT/OUTPUT
INTERFACE AND BUFFERING

I 9902 I

ALU
CONTROL AND

CENTRAL TIMING

9900
MICROPROCESSOR

CENTRAL TIMING

9904
CLOCK

PARALLEL INPUT/OUTPUT
INTERFACE AND BUFFERING

9901

BUS
CONNECTOR

I/O
CONNECTOR

LINE
INT .• •

RS232
INTERFACE

TERMINAL
CONNECTOR

TTL BUFFERS

A First Encounter:
Getting Your Hands on a 9900

GETTING IT TOGETHER

31

Figure 3-4. Miniature Computer System on TM 990/100M-1 Module

EMS 9900
MPU

TIM 9904
CLOCK --1±— 48 MHz

RESET

256 X 16 256 X 16 RAM 1 	RAM 	I

1K x 16 or 1K 016 3K x 16 	i EPROM 	j EPROM

TMS 9901 TMS 9902
PSI ACC

P3 & P4
	

P1
	

P2

Figure 3-5. TM 990/ 100M-1 Block Diagram

9900 FAMILY SYSTEMS DESIGN 3-7

a

1
	

b

e

d

TM 990.'100M
MICROCOMPUTER

TM 990/301
MICROTERMINAL

TMS 9901
PROGRAMMABLE

SYSTEMS
INTERFACE

GETTING IT TOGETHER A First Encounter:
Getting Your Hands on a 9900

POWER SUPPLY

+ 5V + 12V — 12V GND

LOGIC LEVEL INPUT PERIODICALLY
TESTED BY THE MICROCOMPUTER

+ 5V

SLOW

FAST

.. 	..

SEVEN
SEGMENT
DISPLAY

LOGIC LEVEL
	

INVERTERS
OUTPUTS UNDER
	

USED AS LED SEGMENT
CONTROL OF MICROCOMPUTER

	
DRIVERS

ELEMENTS
AS SHOWN

3

Figure 3-6. The First Encounter Task

All of the components of Figure 3-7 and 3-8 are wired together on a separate printed circuit
board as shown in Figure 3-9. The Radio Shack #276-152 board provides individual
plated surfaces around holes to make it easy to anchor components and to interconnect
all components with wire-wrap. J4, the 40 pin wire-wrap PCB edge connector accepts
the edge connections of P4 on the TM990/ 100M-1 board shown in Figure 3-1. After

wiring this connector, put a piece of tape across the top of this connector so that it is
correctly oriented before the board is plugged in; or the same can be done here as for P,
discussed a little later. Note also on Figure 3-1 that there is an area on the 990/100M-1
board for prototyping. The components of Figure 3-9 may be wired in this area rather
than using a separate printed circuit board. Using a separate board allows this area to be
used for more permanent components for a specific dedicated application of the
990/100M module.

3-8 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

GETTING IT TOGETHER

14 	VCC (r 5V)

13 	IN 6

12 	OUT 6

11 	IN 5

10 	OUT 5

31
9 	IN 4

8 OUT 4 11

0012 100I -2 1000 10011 1 1 000 1 1 0012

3-9 9900 FAMILY SYSTEMS DESIGN

IN . C
OUT I 	E.
IN 2 	3 I \

	

 2 4 E 	 Y
IN 3 	5 C
OUT 3

6 C 	 IP
GND 7 C

411.1h. B. 14-16 PIN DIP SOCKET
(WIRE-WRAP OR SOLDER TERMINALS)

1 — SN 74H05N HEX DRIVER
(EACH DRIVER CAPABLE OF SINKING 20 MA)

1 — 14 OR 16 PIN DIP SOCKET
(RADIO SHACK #276-1993, 94)
(TI # 811604 M&C — 16 PIN WIRE-WRAP)

Figure 3-7. LED Driver Parts

TOP VIEW
A, TIL303 7 SEGMENT NUMERICAL DISPLAY

B. 14 OR 16 PIN DIP SOCKET
(WIRE-WRAP OR SOLDER TERMINALS)

COMPONENT PARTS

1 — 7 SEGMENT DISPLAY TIL303

1 — 14 OR 16 PIN DIP PACKAGE
(C-811604 M&C — 16 PIN WIRE WRAP)
(RADIO SHACK — 276 —1993, 94)

6 — 100 OHM RESISTORS, 1/4 W

Figure 3-8. Segment Display Parts

A SN74H05N
SIX INVERTER
DRIVERS
14 PIN PLASTIC PKG

C SCHEMATIC OF SN74H05N
(TOP VIEW)

COMPONENT PARTS

C SCHEMATIC OF TIL303

14 b

13Vcc

12

11

10 D.P.

Ed

9c

a

Vcc2

f3

9 4

 5

e6

Vcc7

D 100 OHM RESISTORS 1/4 W

GETTING IT TOGETHER A First Encounter:
Getting Your Hands on a 9900

J4

S1
0 + By

	

—4 	I-

-1=1—

	

—4 	I-

	

-1 	I-

=1—

0 GND

I/O
BIT

0 SN74H05N TIL 303

1
PRINTED CIRCUIT BOARD
RADIO SHACK # 276-152

2

3
A. LAYOUT

14
1 —

I

L
3

10052 r100D 	10012§10052

2

14 	6

5V

13

7 SEGMENT
DISPLAY

• 	TIL303

c
 9

8
—

SN74H05N

+
S

FAST

0 	
SLOW

J4
20 22 18 14 16 40-PIN WIRE WRAP

PCB EDGE CONNECTOR 7S7

B SCHEMATIC

Figure 3-9. The Output Board

Following is a complete list of the parts, tools and supplies required. This is the list that
was referred to earlier. Check carefully that all necessary parts are purchased.

PARTS LIST

A. Microcomputer

1 — TM990 /100M-1

B. Terminal

TMS9900 Microcomputer module with TIBUG --
monitor in two TMS 2708 EPROM's and EIA
or TTY serial I/O jumper option.

1 — TM990/301 	 Microterminal

3-10 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

GETTING IT TOGETHER

C. 	Output

1 — Hex LED Driver
1 — 7 Segment Display
2 — 14 or 16 Pin Dip Sockets

6 — 100 ohm Resistors, 1/4 W
1 — Switch, Toggle or Slide,

SPST or DPST
1 — J4, 40 pin, 0.1" c-c,

wire-wrap
PCB Edge Connector
(or equiv. solder
terminal unit)

1 — Printed Circuit Board

SN74H05N
TIL303
TI wire-wrap; 16 Pin — C-811604 M&C;
Radio Shack wire-wrap; 14 Pin 276-1993;
16 Pin 276-1994

TIH421121-20
34

Viking 3VH20/ 1JND5

Radio Shack #276-152

D. Bus Connector (Use for Power in First Encounter)

1 — J1, 100-pin, 0.125" c-c, 	TIH431121-50
wire-wrap
PCB Edge Connector
	

AMPHENOL 225-804-50
(or equiv. solder
	

Viking 3VHSO/9N05

	

terminal unit)
	

Elco 00-6064-100-061-001

E. Power Supplies — Regulated

Voltage 	Regulation 	Current
+5V 	+3% 	1.3A
+ 12V 	±3% 	0.2A
— 12V 	±3% 	0.1A

F. Tools

Wire-wrap connector tool
Wire-wrap disconnecting tool
Wire stripper (30 G)

Soldering Iron

Long-nose pliers
Diagonal cutter
VOM, DVM, DMM

G. General Supplies

Wire (30 G Kynar)
Solder
Plugs and jacks for power supply connections

Note the power supplies required, the voltages, currents, and regulation. Assure that
there is a common ground between all units.

9900 FAMILY SYSTEMS DESIGN 	 3 - 11

330 0 330 0 330 12330 S

B. LIGHT EMITTING DIODES 	 C 330 OHM RESISTORS
TIL209
	

1/4 W
11 V„ or V„

10 5A

55

4A

1Y

2Y

2A

1A

6Y

6A

GND

3A

3Y

4Y

—1

I SN75492N

GETTING IT TOGETHER
	

A First Encounter:
Getting Your Hands on a 9900

(Electronic shops or laboratories might have available individual LEDs, therefore,
Figure 3-10 is provided in case this alternate method of display is chosen. The necessary
drivers and resistors are identified. The necessary substitutions can be made on Figure 3-9.)

After wiring the output board, what remains is to supply power to the board. This is
accomplished through P1 on the 990/100M-1 board. Figure 3-11 shows how the edge
connector is wired to supply power. Be careful to use the correct pins as numbered on
P1 on the board; these pin numbers may not correspond to the number on the particular edge
connector used. Label the top side of the edge connector "TOP" and the bottom
"TURN OVER." This will prevent incorrect connection of power to board. Wire the
connector pins so that the top and bottom connections on the board are used to supply
power, e.g., 1 & 2 for ground; 3 & 4 for +5V; 73 & 74 for — 12V; and 75 & 76 for
+ 12V. Plugs or jacks may be placed on the end of the power supply wires to make easy
interface. With both the P1 and P4 connectors and the output board wired, the total
system is ready for interconnection.

A. SN75492N

MOS-LED DRIVER
(OPEN COLLECTOR)

COMPONENTS PARTS

1 — SN75492N DRIVER

1 — 14-16 PIN DIP SOCKET

4 — TIL209 LED'S

4 — 330 0 RESISTORS

D. SCHEMATIC

Figure 3-10. rthernative LED Output Display

3-12 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

UNPACKING AND CHECKING THE
MICROCOMPUTER (TM 990/100M-1)

UNPACKING AND CHECKING THE MICROCOMPUTER (TM990/ 100M-1)

It is very important to realize that the microcomputer module has MOS (metal-
oxide-semiconductor) integrated circuits on it. These circuits are particularly sensitive to
static charge and can be damaged permanently if such charge is discharged through their
internal circuitry. Therefore, make sure to ground out all body static charge to
workbench, table, desk or the like before handling the microcomputer board or any
components that go onto it.

After unpacking the TM990/100M-1 module from its carton and examining it for any
damage due to shipping, compare it to Figure 3-12 to determine the correct location of all
parts. Additional detail is available in the user's guide shipped with the board. Make sure
that EPROM TIBUG Monitor (TM990/401-1) units are in the U42 and U44 positions
on the board. Make sure that the RAM integrated circuits are in the U32, 34, 36, and
38 positions.

TM 99/100M 0 	 P1 CONNECTOR 	 > >
N N

2 in
C.7 + 	

(TON 	 7 +

2 4 	10 	20 	30 50 	60 	70 74 76 80 	90 	100 ____.
UOUUNIUDIEDBUHTICIDIIU[111E11111NUODUIEUEND0OUE01101101][1f]

34

EDGE CONNECTOR

li N '11 li li Ii ti li 11 [I 11 {I LI Illi 11 li il I] 11 li 11 II 11 ti II I] 11 ni 1111)111 1L
	 SHRINK SLEEVING 	
	 18 AWG INSULATED STRANDED WIRE

	 BANANA PLUGS 	

(

SUGGEST COLOR CODING)
THESE AS PER TABLE

•ar

GND if +5V —12Vir +12Vir

VOLTAGE 	 P1 PIN• 	 SUGGESTED PLUG COLORS

+5V 	 3, 4 	 RED

+12V 	 75, 76 	 BLUE

—12V 	 73, 74 	 GREEN

GND 	 1,2 	 BLACK

• ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

Figure 3-11. Power Supply Hookup for 990/ 100M-I Microcomputer

CAUTION: Before connecting the power supply to PI, use a volt-ohmmeter
to verify that correct voltages are present as shown in Figure 3-11.

9900 FAMILY SYSTEMS DESIGN 	 3-13

UNPACKING AND CHECKING THE
	

A First Encounter:

MICROCOMPUTER (TM 990/100M-1)
	Getting Your Hands on a 9900

cc
0

CC

0

Z

D

0

0

Z <

0

0

N
o

CC
 E

a
, a,
 0

Z

2 u)
0

<

it

W

IR
E

 W
R

A
P

 A
R

E
A

Figure 3-12 TM 990/100M-1 Module as Shipped

3-14
	

9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

CONNECTING THE MICROTERMINAL/
OPERATING THE MICROCOMPUTER

Compare the board to Figure 3-12 & 3-13. Make sure that the jumpers are in the following
positions:

JUMPER POSITION JUMPER POSITION

Ji P1-18 J4 08, 08
J2 2708 J 7 EIA

J 3 08, 08 J11 OPEN

They assure that memory locations are identified correctly and that the microterminal
interfaces correctly.

CONNECTING THE MICROTERMINAL TM990/301

The microterminal (Figure 3-2) should be examined to verify there is no damage due to
shipment. It will be connected to the microcomputer through P2 on Figure 3-12. Jumpers
J13, J14, and J15 must be installed on the TM990/ 100M-1 board in order to supply
power to the microterminal. Using the extra jumpers provided, short pins on the board
at J13, J14, and J15 (Figure 3-13). Attach the plug on the microterminal cable to the P2
connector on the board.

OPERATING THE MICROCOMPUTER

Check once more that all wiring is correct for the output board (Figure 3-9), the power
connector (Figure 3-11) and the jumpers, then follow these steps:

Step 1 	Begin with connectors to P1 or P4 disconnected

Step 2 	Turn on power supplies and verify that all voltages are correct at the
connector for P1. Turn off power supplies.

Step 3 	Connect the power supply connector to P1. Make sure edge connector
has the word "TOP" showing. Turn on — 12V supply first, then
+ 12V, then +5V.

Step 4 	Verify the voltages of + 5V, — 12V, and + 12V on the board printed
wiring connections near the edge of the board between P2 and P3.
Adjust power supplies or verify trouble if these are not correct.

Step 5 	Verify the voltages of these terminals:
J13 	+5V
J14 	+ 19V
J15 	— 12V

If these are incorrect, correct the problem.

Step 6 	Turn off power supplies. With the top edge of connector for P4 in
correct position, connect output board to P4, turn on power supplies in
same sequence as before, — 12V, + 12V, +5V.

The total setup should now look like Figure 3-14 and the microcomputer is now ready to
perform the task; all that's required is to tell it what to do.

34

9900 FAMILY SYSTEMS DESIGN 	 3-15

MICROTERMINAL
USE

J13

J14

J15

111
.0 000 	 C ,000.

C-0000000000000000 400

OOOO@04840OOO C004 OQQ DOCICH6
CIV6CC400C .400400necimo
CIOCCODC.456.04000000006e.
OCCOO - 000 	

0
00CCI.C• 0041 CO0000000

00.1500 	ce1:00000 note
eccoo cococe 	00
0 ,00•0000000Creses

tele bevo 	

IDOCIOCC..0047..
CatilGOvoccrocceribb meo

irlochnivo OeS
Cercloc,: 0•150150Cmpro col:moot, o

411 111 	is rR to

3

r pFi i0Gmai-2)

SPARE JUMPERS
J16. J17. J18

V.A. 	J12 MULTIDROP IL INTERFACE

Yf 	 J11 (I/O

T,g174:1111111 	INTERFACE TYPE)

1%71111e•••••Jio
• 1: 	•-■ J9

J...8 Y I 	••• J8
.""•• J6

J5

MULTIDROP
INTERFACE

J7 (EIA MULTIDROP
SELECT)

J4
TMS 2708/16

J2 	EPROM
SELECT

J3

CONNECTING THE MICROTERMINAL/
	

A First Encounter:

OPERATING THE MICROCOMPUTER
	Getting Your Hands on a 9900

Figure 3-13. Jumpers used on TM 990/ 100M-I Board for Option Selection

3-16
	

9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

CONNECTING THE MICROTERMINAL/
OPERATING THE MICROCOMPUTER

Figure 3-14. Total System Connected

34

9900 FAMILY SYSTEMS DESIGN
	

3-17

TELLING THE MICROCOMPUTER
	

A First Encounter:

WHAT TO DO
	 Getting Your Hands on a 9900

TELLING THE MICROCOMPUTER WHAT TO DO

The microcomputer is told what to do through the microterminal keyboard. This is
shown in Figure 3-15. Initial conditions are necessary so Step 7 starts everything at an
initial point.

Step 7
	

Figure 3-1 and Figure 3-12 identify the RESET switch. Switch it all the way
to the right (facing the toggle). Now depress the CLR (clear) key on
the microterminal. Nothing will be on the display but to verify that it is
working, press several of the number keys. The numbers pressed will
appear in the display. Now press the CLR key again on the
microterminal.

As we depress selected keys on the microterminal, the microcomputer is being given
instructions — a step by step sequence of things to do to perform the first encounter
task. The microcomputer is being programmed to do a job.

In order for the microcomputer to do its task according to the instructions given, it must
also do many things dictated by other instructions that are stored in sequence in the
TIBUG Monitor read-only memory (ROM). The program that performs the first
encounter task is stored in the random access memory of the microcomputer and used in
sequence. As a result, as the microcomputer accomplishes the task for which it is
programmed, it performs each of the steps dictated by the "main program" in the RAM
and by TIBUG in ROM.

There are only a few keys used on the microterminal for the first encounter. Identify
these on Figure 3-15 and on the microterminal. Three of these are: i Pen (enter memory
address) is used to display a specific memory address and give the user the ability to
change the contents of that location. I mi , (enter memory data) changes the contents of
the memory location and lam!' (enter memory data and increment) changes the contents
of the memory location and advances the address by two.

Note that Figure 3-15 identifies the information given by the display. There are two banks
of 4 digits each that are displayed. The left 4 digits display the address register (memory
address) and the right 4 digits display the data in the data register (data to be stored in
memory, being read from memory, or being operated on by the microcomputer). It is of
no concern at the moment but both of these 4 digit registers are identifying the value of
their data in hexadecimal code. Suffice it to say at this time that each hexadecimal digit
represents 4 bits of data for a number that has a value represented by 16 bits. Each
hexadecimal digit can have at any one time an alphanumeric value of any one of the
following: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. The decimal value of these
numbers are shown in Figure 3-16 as they occur in the place value position of the 4 bit
display. Hexadecimal numbers will be identified with a subscript of 16 in the text, e.g.,
02E016 or 0100, 6 whenever there is need to avoid confusion.

3-18 	 9900 FAMILY SYSTEMS DESIGN

ADDRESS 	DATA

\ft TEXAS INSTRUMENTS

HIS

I 	1
	

I 	I
EWP EPC

I 	I
	

I 	I
DWP DPC

I 	1
EMA EMD

0 	1

n
4 	5

8 	9

I 	I
	

I 	I
C
	

D

I

Mlcrotermina
TM 990/301

H ►D RUN

I
	

I 	I
EST ECRU

I 	I
DST DCRU

= L 	I =
EMDI CLR

n
2 	3

n n
6 	7

n
A

n I 1
E 	F/-

n n

A First Encounter:
Getting Your Hands on a 9900

TELLING THE MICROCOMPUTER
WHAT TO DO

31

The display of the microterminal
is divided into two 4 hexadecimal
digit banks. The left bank dis-
plays address register informa-
tion and the right bank displays
data registers.

Figure 3-15. Microterminal Keyboard and Display

Every program starts at a particular place in the RAM memory. The first encounter
program will start at memory location identified by the hexadecimal address FE00. This
is a 16 bit address which in machine code looks like this: 1111 1110 0000 0000
(F = 15; E =14; 0 = 0; 0 = 0) and from Figure 3-16 has a decimal value of
61,440 + 3584 + 0 + 0 = 65,024. The program starts at memory location 65,024.

To start the sequence of instruction steps for out first encounter, the starting address is
entered and the 1 r:. (enter memory address) key is depressed on the microterminal.
This is program Step 2 in Step 8. To help verify the steps the display data is also
recorded.

Step 8 	 Display

KEYSTROKES 	 ADDRESS 	DATA
0. ICLRI

1.1F/-11E110110 l 	 FE00
2. LMA 	 FE00 	XXXX (X = Don't care)
3.101 1 2 1 1 Ell 0 1 	 FE00 	02E0

9900 FAMILY SYSTEMS DESIGN 3-19

TELLING THE MICROCOMPUTER
WHAT TO DO

A First Encounter:
Getting Your Hands on a 9900

This keystroke at Step 3 is a hexadecimal code — an instruction — that is telling the
microcomputer to load a register with data. The data, however, is at the next address

I EMDI location. Therefore, with the next keystroke I 	(enter memory data and increment),
the instruction 02E0 is stored at address location FE00 and the next memory address for
an instruction is brought into the display by incrementing (advancing) the FE00 address
by 2 (the reason for advancing by 2 will become clear as more is learned about the 9900
microprocessor).

Step 9

KEYSTROKE

4. 	EMDII

MSB

ADDRESS

FE02

DATA

XXXX

LS B

BITS

163 16 2 16' 16°

0 	1 2 	3 4 5 	6 	7 8 9 	10 	11 12 13 	14 	15

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4 096 1 256 1 16 1 1
2 8 192 2 512 2 32 2 2
3 12 288 3 768 3 48 3 3
4 16 384 4 1 024 4 64 4 4
5 20 480 5 1 280 5 80 5 5
6 24 576 6 1 536 6 96 6 6
7 28 672 7 1 792 7 112 7 7
8 32 768 8 2 048 8 128 8 8
9 36 864 9 2 304 9 144 9 9
A 40 960 A 2 560 A 160 A 10
B 45 056 B 2 816 B 176 B 11
C 49 152 C 3 072 C 192 C 12
D 53 248 D 3 328 D 208 D 13
E 57 344 3 584 E 224 E 14
F 61 440 F 3 840 F 240 F 15

To convert a number from hexadecimal, add the decimal equivalents for each hexadecimal digit. For example,

7A82, 6 would equal in decimal 28,672 + 2,560 + 128 + 2. To convert decimal to hexadecimal find the

nearest number in the above table less than or equal to the number being converted. Set down the hexadecimal

equivalent then subtract its decimal number from the original decimal number. Using the remainder(s), repeat

this process. For example:

31,362[0=7000'6 + 269010 	 7000
2,690 10 =A0016 + 130t0 	 A00

130j0 — 80,6 + 210 	 80
2io— 216 	 2

7A82, 6

Figure 3-16. Place Value of Hexadecimal Digits in Significant Bit Positions

3-20 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

TELLING THE MICROCOMPUTER
WHAT TO DO

Program Step 4 of operating Step 9 shows this. Memory location identified by address
FE02 is now ready for the data that will be put into the register identified by the
instruction 02E0 at location FE00. The data is FF20.

5. F1 F1 1 2 1 101
	

FE02 	 FF20
6.

IEMDII
	

FE04 	 XXXX

Program Step 6 has now advanced to the next memory location which is awaiting the
next instruction which is keystroked in by program Step 7.

I . 1 0 1 1 2 01 Ill FE04 0201

Step 10
Continue now to program steps through the end of the program. Note how the address
memory location advances by 2 each time 'Emil is pressed. This is how the program will
be followed when it is run. The starting address FE00 will be loaded into the program
counter. The program counter will then count by 2 and advance the microcomputer
through each program step as the instructions are completed.

KEYSTROKE ADDRESS DATA

8. 1E1,011 FE06 XXXX
9. 1 	F1 	E] 	1 2 	1 	I E FE06 FE2E

10. IEMDII FE08 XXXX
11. 1 0 1 	1 2 1 	1 0 	1 FE08 020C

I EMDI I 12. FEOA XXXX
13. 1 	0 	1 	l 	1 2 	1 	1 01 FEOA 0120
14. IEMDII FEOC XXXX

FEOC *1d00 15. Il l 	1 	o 01 	1 0
EMDI 16. FEOE XXXX

17. 01 	1 6 1 9 1 	1 	l 	1 FEOE 0691
18. IEMD11 FE10 XXXX
19. I l l 	1 	E 	1 0 1 	0 FE10 1E00

IEMDII 20. FE12 XXXX
21. 1 	0 	1 	1 	6] 	1 9 	1 	II FE12 0691
22. IEMDII FE14 XXXX
23. 11 	1 	D 1 	1 0 	1 	1 FE14 *1d01
24. FE16 XXXX

25. 1 	0 	1 	1 6 1 	1 9 	1 	1 FE16 0691
26. IEMDII FE18 XXXX
27.I l l 	I 	E l 	1 0 	1 	III FE18 1E01
28. IEMDII FE1A XXXX
29. 1 0 	1 	6 	1 	1 9 	1 	II I FE1A 0691
30. EMDI FE1C XXXX
31. 1 	I 	1 	1 	o 0 	1 	12 1 FE1C *1d02

*As displayed on 301 Terminal

34

9900 FAMILY SYSTEMS DESIGN 3-21

■ 3

TELLING THE MICROCOMPUTER
WHAT TO DO

A First Encounter:
Getting Your Hands on a 9900

KEYSTROKE ADDRESS

FElE
FE1E
FE20
FE20
FE22
FE22
FE24
FE24
FE26
FE26
FE28
FE28
FE2A
FE2A
FE2C
FE2C
FE2E
FE2E
FE30
FE30
FE32
FE32
FE34
FE34
FE36
FE36
FE38
FE38
FE3A
FE3A
FE3C
FE3C
FE3E
FE3E
FE40
FE40
FE42
FE42
FE44
FE44
FE46

DATA
XXXX
0691
XXXX
1E02
XXXX
0691
XXXX

*1d03
XXXX
0691
XXXX
1E03
XXXX
0691
XXXX
10EF
XXXX
1F04
XXXX
1305
XXXX
0203
XXXX
FFFF
XXXX
0603
XXXX
16FE
XXXX

*0456
XXXX
0203
XXXX
3FFF
XXXX
0603
XXXX
16FE
XXXX

*045b
XXXX

[EMDI 32.
33. 0 1 	1 6 1 	I 9 	1 	l 	1
34. EMDI I
35. I 	1 	1 	[E 	1 	0 	1 	I 	2 	I

36.
IEMDII

37. [0 	I 	1 	6 	I 	1 9 1 	1 	1 	I
38. I EMI'

39. 11 1 	D 	1 	3 	I
40. IEMD11

41. 101 	161 	1 9 1 	11
42. EM011

43. I 1 1 	E 	1 0] 	1 	3 	I

44. 1
45. 0 I 	[6 	I 	19I 	I 	1 	I
46.
47. I 	1 	1 	[I 	El 	F1

48. I EMI

49. 1 	1 	I 	F 	1 	0 	1 	141

50. I EMDI 1

51. 111 	[3 	I 	I 	0 	I 	15 1
52. lEm Dll

53. 1 	0 	1 	1 2 	1 	0 	I 	1 	3 	I

54.
55. [F 	[F 	[[F 	[F 	1

56. EMDI I

57. 1 01 	61 	0 	I31

58. I EMDII

59. I1 1 	161 	IF 	IE I
60.
61. 1 	o 	1 	1 	4 	1 	1 	5 	1 	B

62.
63. 0 	[2 	I 	I 0 1 	I31
64. EMDI I
65. 1 	3 	I 	[F1 	F 	1 	F]
66.
67. 1 	0 	I 	6 	1 	10 1 	I3 I
68. I Emil

69. I1 1 	6I 	I Fl 	1E
70.
71. 1 	0 	I 	1 	4 	I 	151 	[B

72. I E m o il

3-22 9000 FAMILY SYSTEMS DESIGN

A First Encounter:
	

TELLING THE MICROCOMPUTER
Getting Your Hands on a 9900 	 WHAT TO DO

Step 11

All the program steps are now entered. It remains to run the program, that is, send the
microcomputer through its sequenced steps to determine if it will accomplish the task.

p
Recall, that the system must be set to the initial conditions and to the starting point.
This means that the system must start at memory address FE00 because that is where the
first instruction is located.

Inside the microcomputer there is a register (a temporary storage location for 16 bits)
that always contains the address of an instruction. It was previously noted that as the
memory location of instructions was incremented by 2 as the program was entered, so
also will the program counter be incremented by 2 by the microcomputer to go to the
next instruction. Therefore, the initial conditions are accomplished by loading the
program counter with the address location FE00. This is accomplished by an IERdl key
on the microterminal. The IEPCI (enter program counter) key changes the value of the
program counter. It will enter into the program counter the value that is in the data
register of the microterminal display.

The IDRcl (display program counter) key on the microterminal is depressed to determine
if the correct value has been entered into the program counter because it displays the

"ow current value of the program counter.

The IRuNI key is depressed to begin execution of the program starting with the address
in the program counter.

To run the program, go through Steps 1 thru 5.
KEYSTROKE 	 ADDRESS 	 DATA
1. ICLR

2. E l l o l l 	 FE00
3. IEPcl 	 FE00
4. IDPc1 	 FE00
5. (RUN 	 run

4111111.

VOILA!

The first encounter task is being accomplished. Switching the toggle switch will change
the rate of the segment display.

Under program control output logic levels on a set of output lines have been set to a
"1", held for a time, set to a "0", held for a time, etc. in a particular sequence. The delay
between "ls" and "Os" also is under program control. Such output levels then have been
interfaced to driver circuits to accomplish a given task — in this case lighting LED
segments of a display.

9900 FINIILY SYSTEMS DESIGN 	 3-23

3 4

HOW WAS IT DONE? A First Encounter:
Getting Your Hands on a 9900

Step 12

To stop the program, depress IH/SI . The RESET switch on the microcomputer could
also be pressed. (However, in doing so, to return to the program, go through the initial
five steps of running the program at the end of operating Step 10.) The program may be
started again by depressing IRuNI after it was halted by 1H/S1

Step 13

If for some reason the first encounter task is not being accomplished after completing
Step 10, the program can be checked by entering FE00, the beginning address and
depress MA . The contents of memory and the instruction at FE00 will be displayed.

■ 3 	Each memory location can then be examined by depressing lEmoll and reading the display.
In this manner, the program can be examined for an error. When the error is located,
the correct data can be entered as it was in the original program and lEmoi is pressed. The
program can then be run by returning to the initial sequence of operating Step 11.

The program may be entered at any valid address by entering the address and pressing
I MA and then proceeding step by step with [End . There is no need to go back to the
beginning address each time.

HOW WAS IT DONE?

The question naturally arises — how was this task accomplished by the microcomputer,
and more importantly, how was the task taken from idea to the actual program? How
does one know what to tell the microcomputer to do?

Of course, this will take a great deal of study of this book and much operation of
systems, starting with the TM990/ 100M-1 microcomputer. The way the idea is turned
into aprogram for the first encounter is covered in the remaining part of this chapter.
This is a good foundation for building knowledge of the 9900 microprocessor, applying
the 990/ 100M microcomputer to many other tasks, and understanding the use of the
9900 in solving other types of problems.

3-24 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

BACK TO BASICS

BACK TO BASICS

The process of understanding how the task was taken from idea to instructions for the
microcomputer begins by returning to some basic concepts to assure that these are
understood.

Recall that Figure 3-4 identified the functional blocks of our microcomputer. The central
processing unit includes the 9900 microprocessor. Examining Figure 3-5 further and the
functional block diagram of Figure 3-17 shows that the 990/100M microcomputer is bus
oriented. Recall that a bus is one or more conductors running in parallel which are used
for sending information. The 9900 microprocessor sends an address to memory, to
identify data required, on the 15-bit address bus. It receives data from memory on a 34
16-bit data bus. It should be noted that the same 15-bit address bus goes to the
input/output interface units. The address bus is used either to send an address to memory
or an address to input/output, not both at the same time. When the signal MEMEN is a
logic low, the address bus is for memory. If the address bus is not for memory then it can
be used by I/O. When the address is for I/O, the selection of which lines will be inputs
or outputs is under control of the 9900.

SERIAL
ASYNCH

I/O -4-
LEVEL
SHIFT

So -S,

TMS
9902
ACC

CE

DECODE Ao — A, <

TMS
9901
PSI

INTERRUPTS

ADDRESS BUS 	 15 BITS

AO-A1 4
DBIN
	

CONTROL

READY
WAIT
	

ROM
	

RAM

(INTERRUPT CODE)

IA0

(AD 4 1 04

<41_4J,_ 16 BITS

—[:>-- - - BUFFER

DATA BUS

(CRU)
CRUIN
CRUOUT
CRUCI.K

TMS9900
CPU

DO-D15

CLOCK GENERATOR
AND CONTROL

TMS 9904

Figure 3-17. Functional Diagram of TM 990/ 100M-I Microcomputer

9900 FAMILY SYSTEMS DESIGN 	 3-25

BACK TO BASICS A First Encounter:
Getting Your Hands on a 9900

0 3

Therefore, lines to accept data as input, or to deliver output data are selected by address
bits in the same fashion that address bits locate data in a memory.

Examination of the architecture of the 9900 microcomputer in Figure 3-18 reveals, as in
Figure 3-17, the address bus, the data bus, signals for the CRU (the Communications
Register Unit is an I/O interface for the 9900 architecture), signals for interrupt,
control signals and master timing signals. Each of these are external signals. Further
examination of internal parts is required to expand on more basic concepts, with
emphasis on the ones that are used for the first encounter task.

REGISTERS

Recall that a register is a temporary storage unit for digital information. Inside the 9900
there are these types of registers: a memory address register, a source data register (data
register), an instruction register, an interrupt register, some auxiliary registers like T 1

 and T2 , and the registers that will be most applicable to the first encounter — the
program counter, the workspace register, the status register and a shift register used as
part of the hardware to select the input and output terminals. Additional parts include:
1) the ALU — it is the arithmetic and logic unit that performs arithmetic functions, logic
and comparisons. 2) Multiplexers that direct the data over the correct path as a result of
signals from the control ROM and control circuitry. 3) Timing circuits so that all
operations are synchronized by the master timing.

Every time a piece of information is required to be stored in memory or retrieved
(fetched) from memory, the memory must be told where the data is located or to be
located. The memory address register holds the address to be put on the address bus for
this purpose.

Data fetched from memory is received either by the source data register and distributed
by the 9900 microprocessor as required, or by the instruction register when it is an
instruction. The instruction is decoded and transmitted to the control ROM which
sequences through microinstructions previously programmed into the control ROM to
execute the instruction. The instruction might be "Increment register 1 by two".
Instruction steps take the data from register 1 to the ALU which adds "2" and returns
the data to register 1.

3-26 	 9900 FAMILY SYSTEMS DESIGN

T1

T2

PROGRAM COUNTER

WORKSPACE REGISTER

\ A MULTIPLEXER/1

16

STATUS
REGISTER

ALU

D MULTIPLEXER/

16
	

16

SHIFT
	

16
	

16
COUNTER

SOURCE DATA
REGISTER

SHIFT REGISTER

	-)

16

CONTROL
ROM

C
0
N

0

CONTROL

HOLD

HO LDA

LOAD

READY
WAIT

NIEMEN
DBIN

RESET
IA0

CR UCL K 	

CRU

01-04

MASTER
TIMING

CONTROL
LOGIC

A First Encounter:
Getting Your Hands on a 9900

BACK TO BASICS

INTERRUPT
CODE
	

ADDRESS BUS

INTREO 	ICOTC3
AO-A14

INSTRUCTION
REGISTER

'.. ..,.,1.,,,16 	C 16

NIULTIPLEXER

,<6

INTERRUPT

REGISTER M1 EMORY

ADDRESS

REGISTER

16

16

CRUOUT

	

DO-D15 	 CRUIN

CRU
DATA BUS

Figure 3-18. iIrchitecture of 9900 Microprocessor

	

9900 FAMILY SYSTEMS DESIGN 	 3-27

BACK TO BASICS A First Encounter:
Getting Your Hands on a 9900

■ 3

Two registers of significant concern for the first encounter task are the status register
and the workspace register. The status register is just what the name implies. The 9900
microprocessor continually checks on how things are going (the status) by following
instructions that command it to check various bits of the status register. Figure 3-19 shows
the bits of the status register.

0 2 3 4 5 6 7 8 9 10 11 12 	13 	14 15

STO

L>

ST1

A>

ST2

ST3

C

ST4

0

ST5

P

ST6

X

not used (=0) ST12 ST13 ST14 ST15

Interrupt Mask

Figure 3-19. Status Register

Each bit of the first 7 bits is concerned with identifying that a particular operation or
event has or has not occurred as shown here.

BIT 	PURPOSE
	

BIT 	PURPOSE

0 	Logical Greater Than 	 4 	Overflow
1 	Arithmetic Greater Than 	 5 	Parity
2 	Equal 	 6 	XOP
3 	Carry 	 12-15 	Interrupt Mask

The last 4 bits are concerned with the interrupt signals and a priority code associated
with the interrupts.

The first encounter uses bit 2, the "equals" status bit to change the time delay in the
LED sequence.

WORKSPACE

The workspace register is the same as the other registers, but it is used in a special way.
As the 9900 microprocessor and the microcomputer step through program instructions,
there is a need to have more registers than those available on the 9900. Instead of
providing these registers in the 9900, a file of registers is set up in memory and a
reference to this file saved in the workspace register. One of the rules in setting up this
file is that it will always contain 16 registers in 16 contiguous (one following another in
sequence) memory words. The workspace register on the 9900 is called the workspace
pointer because, as shown in Figure 3-20, it contains the address of the first memory word
in the contiguous register file, referred to for the application of the 9900 and in this
book as "workspace registers" or just "workspace". The register file can be located

anywhere within RAM that seems appropriate. In the total available memory space,
there are certain reserved spaces for RAM, others for ROM, and others for special
instructions. Therefore, the register file can only be set up in certain portions of
memory. So, where 0200 16 to 021E16 are the 16 locations shown in Figure 3-20a, with
the workspace pointer being 0200 16 , the file could have started at 0300 16 and extended to
031E16 as long as these are allowable locations in the overall memory matrix. The
workspace pointer would contain 0300 16 in the second case.

3-28 	 9900 FAMILY SYSTEMS DESIGN

9900

WORKSPACE POINTER

0 	2 	0 	0, 6

(WORKSPACE REGISTER)

A First Encounter:
Getting Your Hands on a 9900

BACK TO BASICS

MEMORY

— — — — — — — — —

FILE REGISTER 0

11

II 2

. 3

0 4

. 5

. 6

0 7

. 8

9

is 10

II 11

0 12

II 13

0 14

— — — — — — — —

_ — — — — — — —

15

— —

— —

Figure 3-20a. Workspace Registers

MEMORY
ADDRESS (HEXADECIMAL)

01FC

01 FE

0200

0202

0204

0206

0208

020A

020C

020E

0210

0212

0214

0216

0218

021 A

021 C

021 E

0220

0222

0224

FILE OF REGISTERS
— CALLED

WORKSPACE

34

WORKSPACE POINTER

2 	0 	0 16 FILE REGISTER 	 0 0200, 6

INSTRUCTION
REGISTER

(SAYS I NEED
DATA FROM REGISTER 7)

2 x 7

ADDRESS r
BUS

FILE REGISTER 	 7 020E, 6

Figure 3-20b. Locating Specific Register

9900 FAMILY SYSTEMS DESIGN 3-29

NSL, i‘1■11.) J13U
	

A First Encounter:

INSTRUCTIONS
	 Getting Your Hands on a 9900

■ 3

To locate a specific register in the workspace file, the 9900 microprocessor adds the
register number to the workspace pointer address to obtain the address of the specific
register in the file that is required. (It actually adds 2R, where R is the register number,
so that the addresses advance by even numbers. The odd number addresses are used
when the word contents are to be processed in 8-bit bytes.) For example, if register 7
contains the information required by the 9900 microprocessor, then the address 020E in
Figure 3-20a is obtained by adding 14 to the workspace pointer at 0200 16 . This is shown in
Figure 3-20b. In like fashion, if the workspace pointer contained 0300 16 , then adding 14 to
0300 1 , gives 030E 16 the address of register 7, the 7th register down in the file.

Recall that to accomplish the first encounter task, logic levels on output lines had to be
set to a "1" or a "0" in order for the LED drivers to turn on or turn-off the LED
segment respectively. Recall, also, that the particular output lines could be selected. To
understand how this is done, refer to Figure 3-21. This figure is divided into three
bounded regions; the TMS 9900, Memory, and the TMS 9901. The output line from
the 9900 microprocessor that will do the setting is the line "CRUOUT." It is coupled
to the TMS 9901, the programmable systems interface.

The TMS 9901 contains more functional parts to handle the interrupt code and
interrupt input signals but for now the part that is important is that shown in Figure 3-21.
The portion shown is a demultiplexer. The data appearing at CRUOUT is strobed by
CRUCLK into latches feeding the output pins. The particular latch and the particular
output line is selected by the code that exists on the select bit lines S o , S1 , S2 , S3 , and S4 ,
which, as shown in Figure 3-21, are the address lines A 10 through A 14 . The code on So

 through S,, and the CRU logic selects the output latch and line that is to be set. The "1"
or "0" on CRUOUT does the setting. The latching occurs when CRUCLK strobes
the data in.

SBZ AND SBO INSTRUCTIONS

Enough basics have now been covered to begin understanding several of the important
instructions for the first encounter task. Figure 3-21 will again be used and will be followed
from left to right and top to bottom starting with the upper left corner. At a particular
step in the program, controlled by the program counter, the instruction address (the bit
contents of the program counter) is sent to memory over the address bus to obtain the
instruction. Memory is read and the instruction is received by the 9900 on the data bus
and placed in the instruction register. Via the control ROM and the control logic, the
instruction is interpreted as an SBO instruction — "set CRU bit to one." The 9900 is
designed so that it generates the correct So-S, address for the TMS9901 that selects the
output line to be set to a "1" by the instruction. However, as indicated in Figure 3-21, first
an ALU operation must occur before the correct address is obtained. The ALU adds the
contents of one of the registers in the file, workspace register 12 (WR12), to a portion
of the instruction, SBO. This portion of the SBO instruction is identified as DISP

3 -30 	 9900 FAMILY SYSTEMS DESIGN

CONTROL
ROM

CONTROL
LOGIC CRU

LOGIC 0
T
H

R

I/O
SET TO
"I" FOR SBO
TO
"0" FOR SBZ

CRUOUT

P. —0

P, 	0

P, -0

P,

TMS 9900 	 I 	 MEMORY 	 TMS 9901

ADDRESS 	
INSTRUCTION

BUS

DATA BUS

OP
	

DISP

—0
CRUCLK

P, —0

	0

Po 	—0
CE

RST 1

EFFECTIVE CRU BIT ADDRESS
(ONLY BITS 3-14 FROM WR12 USED)

WORKSPACE REGISTER

	P
	

WR12

	

3
	

14

DATA BUS

ADDRESS BUS A,,—A ,

A First Encounter:
Getting Your Hands on a 9900

SBZ AND SBO
INSTRUCTIONS

(meaning displacement) in Figure 3-21. It identifies the specific line to be used in the 9901
for the output. Eight bits are used for the signed displacement (7 and a sign). Bits 3
through 14 are used from the workspace register 12.

AN,. After the ALU operation, the address is sent out on the address bus. Because the
MEMEN line is not active, this tells the 9901 that the address is for I/O. All 15
address bits are there; however, only A 3 through A14 are used for the effective CRU

address. A1 0 through A14 provide S o through S4 for the 9901, while bits A o through A9
 are used for decoding additional I/O as shown in Figure 3-17. AO , A1 , and A2 are set to

zero for all CRU data transfer operations.

Figure 3-21. CR U Concept — Single Bit Output SBO or SBZ on CRUOUT.

3-31

9900 FAMILY SYSTEMS DESIGN

CONTROL
ROM

DATA BUS

BUS
0
T
H

3 	 14
CONTROL

LOGIC CAL
LOGIC

TMS9900 	 i 	 MEMORY

DATA BUS

DISP OP

P.C.

I.R

INST. ADDR INSTRUCTION
ADDRESS

BUS

WORKSPACE REGISTER

ADDRESS

TMS9901

WR12

LOAD BIT 2 WITH
VALUE OF INPUT
BIT

ADDRESS BUS

EFFECTIVE CRU BIT ADDRESS
(ONLY BITS 3-14 FROM WR12 USED)

I'0

	► S0-S4

P. _o

P. -0

P -0

P -0

P, -0

Po _____0

BIT 	0 1 	2 3. 15

CRUIN

STATUS REGISTER

CE

T13 INSTRUCTION A First Encounter:
Getting Your Hands on a 9900

TB INSTRUCTION

Besides setting logic levels on output pins, an additional system requirement for the first
encounter task is to receive an input on an input line. One way of accomplishing this is
to have the 9900 microprocessor look at a selected input line, bring the information
present at a specified time into the 9900 and then examine the information, or test it, to
determine if the information was a "1" or a "0". The TB instruction, "Test CRU Bit",
accomplishes bringing the information into the 9900. Subsequent instructions are added
to determine if the information was a "1" or a "0".

ASTI

Figure 3-24. CRU Concept-Single Bit TB Input on CR UIN

9900 FAMILY SYSTEMS DESIGN
3-34

A IS TIME DELAY
CONTROLLED BY Si

SLOW
Si 0 	

LOGICAL 0

T
A

A 	

	P 	 ON

OFF

ON

OFF

MICROCOMPUTER

A First Encounter:
	

IDEA TO FLOWCHART
Getting Your Hands on a 9900

The selection of the particular line in the I/O unit is the first concern. Figure 3-24 shows
that this is done in the same way as just explained for the SBO and SBZ instructions.
The same portions of the 9901 are used as for the SBO or SBZ instructions except now
these portions are a data selector. Data is selected from one of multiple input lines and
sent to the 9900 microprocessor along the CRUIN line. The value of the information
on the line is placed in bit 2 position of the status register. As discussed previously for
the status register, instructions must follow the TB instruction that will examine bit 2 of
the status register to determine what to do if this bit is a "1" and what to do if it is a
"0". Conditional jump instructions are used to make the decision based on the value of
the data. Note again that this is done one bit at a time.

Accomplishing a TB instruction requires that a base address be given for the particular
input or output line desired. This hardware base address adjusted to a software base
address is placed in workspace register 12. With the TB instruction, a displacement is
given that identifies the particular line which needs to be sampled. This again is the same
as for SBO. The line selected provides data straight through to the CRUIN line — there
are no latches, as with the output data.

Thus, the basic concepts studied have shown the means of getting data to the output and
bringing data in from an input — one bit at a time. They have shown how data is located,

E., read, transferred, stored, and operated on arithmetically. With this, it should be possible
now to get the first encounter idea into a sequence of steps — a program for the
microcomputer to follow.

IDEA TO FLOWCHART

Bringing the idea from concept to program begins with a concept level diagram as
shown in Figure 3-25. It has been decided that the microcomputer is to do the first
encounter task; turn on and off 4 lights in sequence, with a time delay between each
light activation.

TIME

Figure 3-25. Concept Level Diagram

3

9900 FAMILY SYSTEMS DESIGN
	

3-35

FLOWCHARTS A First Encounter:
Getting Your Hands on a 9900

The time delay is to be under control of an external switch.

Understanding the basic concepts of the microcomputer led to the discussion that output
lines could be selected and set to standard TTL logic levels to control drivers that would
light the lights. In like fashion, a standard TTL logic level signal could be brought to
the microcomputer as an input and examined. With this information, a decision could be
made to vary the time delay. If the input is a "1," the lights would go on and off at a fast
sequence. If the input is a "0," the sequence rate would be slow.

Obviously, other mechanical decisions also were made, such as:

1) The lights would be segments of a 7 segment light emitting diode numerical display
■ 3 	because of the compatible packaging and ease of availability.

2) The microcomputer output pins, I/O identification and light number to 7 segment
display segment were set as follows:

9901
990/ 100111 	I/O 	Light No. 	Display Segment 	Note

P4 Connector
20
	

Po 	1 	 f
22
	

P 1 	2 	 b
14
	

P2 	 3 	 e
16
	

P3 	4 	 c
18
	

P4 	 to S1

(These pin identifications are obtained from the schematics in the TM990/ 100M User's
Guide and data sheet information on the TIL303.)

The microterminal TM990/301 was selected as the unit to use for communication with
the microcomputer because of its low cost and ease of use. Terminals such as a TTY and
a 743 KSR can be used and an application shown in Chapter 9 takes up this type
interface.

FLOWCHARTS

The problem solution proceeds from concept to program by constructing a well defined
flowchart to follow in an organized fashion while generating the sequence of steps
required for the microcomputer to complete the task. Figure 3-26 is such a flowchart of
the first encounter task.

3 -36 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
	 FLOWCHARTS

Getting Your Hands on a 9900

START

V

INITIATE

TURN ON
LAMP =1

WAIT

WAIT

TURN ON
LAMP =3

V

WAIT

3l

TURN OFF
	

TURN OFF
LAMP =1
	

LAMP =3

WAIT

WAIT
	

WAIT

TURN ON
	

TURN ON
LAMP =2
	

LAMP =4

y

WAIT
	

WAIT

TURN OFF
	 TURN OFF

LAMP =2
	 LAMP =4

Figure 3-26. Flowchart

9900 FAMILY SYSTEMS DESIGN
	

3-37

FLOWCHARTS A First Encounter:
Getting Your Hands on a 9900

► 3

From START, which requires initial conditions, and a signal to begin — INITIATE —
the task is diagrammed. Each light is turned on, the time delay occurs, the light is turned
off, the time delay occurs, the next light is turned on, etc. The sequence continues until
all lights have been turned on and off and the program begins again.

WAIT SUBROUTINE

Note the time delay is identified as WAIT and it occurs over and over again in the
sequence. Because of this, separate steps will be written for this sequence only one time
rather than repeating it over and over in the program. In this manner, the main
sequence of steps, the main program, can be directed to this identified set of steps, called
a subroutine, by an instruction. The main program is then said to branch to the subroutine
until it completes the steps in the subroutine, then it returns to the main program.

In simpler terms, the WAIT block of the flowchart requires a given number of program
steps, say X. WAIT occurs 8 times in the flowchart. Instead of rewriting the X steps
8 times in the program, the X steps are written once, given the name WAIT, and
referred to 8 times.

Because WAIT is a subroutine, a separate flowchart (Figure 3-27) is generated for it. In
addition, the time delay is to be varied by the switch S 1 , therefore, different steps are
followed if the switch is "on" with a value of a logical "1" or "off" with a value of a
logical "0". Note that when the subroutine WAIT is encountered, the first thing that
occurs is to find out the position of the switch. Is it a logical "1" or a logical "0?" A
decision is made on the basis of what is found. "Yes, the switch is on," (logical "1")
makes the time delay short and the sequence fast. "No, the switch is off," (logical "0")
makes the time delay long and the sequence slow.'

There are a number of ways to provide a time delay. This flowchart uses one of the
simplest — load a register with a number, keep subtracting one (decrementing) from the
number until the number is zero. The number of cycles it takes to get the number to
zero times the time for each cycle is the time delay. Larger numbers, longer counts,
provide longer delays.

Each arm of the flowchart contains the same type of sequence, loading the number;
decrementing; checking for zero; if not zero, jumping back and decrementing again; if
zero, returning to the main program. Note that in the flowchart there is a branch
decision and a branch decision with a jump back or a loop. The program runs in this loop
until it comes to a condition where it can get out of the loop or "exit from the loop."

3-38 	 9900 FAMILY SYSTEMS DESIGN

RETURN TO
PROGRAM

RETURN TO
PROGRAM

TIME 	 YES

111111b.

LOAD
DECREMENTER

WITH
3FFF

TIME 2

NO

NO

LOAD
DECREMENTER

WITH
EFFE,,

TIME 1

NO

DECREMENT DECREMENT

A First Encounter:
	

FLOWCHARTS
Getting Your Hands on a 9900

SUBROUTINE JUMP

Special things happen when a subroutine such as WAIT is encountered in the main
program. Figure 3-28 diagrams the steps. The main program has executed from Step 1 to

In" Step 5. At Step 6, the computer encounters the instruction telling it to branch to
subroutine A and do subroutine A. Therefore, in order to return to the correct location
in the main program after executing the subroutine, the branch instruction at Step 6 also

tells the computer to remember the address of Step 7.

WAIT

Figure 3-27. WHIT Subroutine

3 1

9900 FAMILY SYSTEMS DESIGN
	

3-39

STEP A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

A-9

► 3

STEP 1

2

3

4

5

B

7

8

9

BRANCH TO
SUBROUTINE A

GO BACK
TO MAIN

PROGRAM

FLOWCHARTS A First Encounter:
Getting Your Hands on a 9900

The subroutine is executed through Step i1-8. Whereupon the computer encounters an
instruction at Step 21-9 that tells it to return to the Step 7 address which it remembered at
Step 6. In this fashion, each subroutine can be executed and program control returned to
the main program. Of course, there are branches that can occur from a subroutine to
another subroutine but the principle is the same.

MAIN
PROGRAM SUBROUTINE A

Figure 3-28. Branch to Subroutine

The instruction from the TM990/ 100M microcomputer instruction set that accomplishes
the branch to a subroutine is called Branch and Link. This is called a "subroutine jump"
instruction and will be identified by the letters BL and some additional information that
tells the location of the address of the first instruction of the subroutine. In addition,
recall that a register file is to be set up for general registers. Well, register 11 of this file
(WR 11) is the storage place used to remember the main program address that is
returned to after executing the subroutine.

The return instruction from the subroutine used is called an unconditional branch
instruction. It is identified by Branch. Since the contents of register 11 must be returned

to the program counter to return from a subroutine, this instruction will be identified
as B*11. Note that the file register 11 must be reserved for this use by the programmer,
otherwise its contents are likely to be changed at the wrong time and the computer
misled into a wrong sequence.

3-40 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

FLOWCHARTS

A LOOP WITHIN THE WAIT SUBROUTINE

Within the WAIT subroutine is another common reoccurring concept — a loop.
However, before examining this program sequence further, it would be beneficial to
clearly understand the meaning of the blocks in the flow charts. The general meaning of
the most commonly used blocks is shown in Figure 3-29. There is a symbol for the entry to
or exit from a program (or for an off-page connection). This is identified with an
appropriate symbol or label — START and STOP in this example. Rectangles identify
operations. Inside the rectangle is an appropriate abbreviated statement to describe the
operation. Decisions are identified with a diamond. Since programmed logic occurs in
sequence, these blocks are relatively simple. A two-state decision answers a question of
yes or no, true or false, etc. A three-state decision answers a comparison question of
greater than, equal to, or less than (of course, there could be further mixtures of these).
So decision blocks have appropriate questions identifying them.

In the WAIT subroutine of Figure 3-27, the first decision is "Is the switch ON?," and the
consequences have already been discussed. The second decision has the question "The

quantity examined — is it equal to zero?" Within this program sequence, if the quantity
is not equal to zero, then the program goes through the same path again.

34

ENTRY
(OFF PAGE CONNECTION)

OPERATION

DECISION

SUBPROGRAM LABEL

EXIT
(OFF PAGE CONNECTION)

Figure 3-29. Common Flow Chart Blocks

9900 FAMILY SYSTEMS DESIGN 3-41

■ 3

LOADING A REGISTER
FOR THE TIME DELAY

A First Encounter:
Getting Your Hands on a 9900

The program loop is accomplished by a branch instruction from the instruction set called
a conditional jump instruction. The conditional jump causes the microcomputer program
to branch to a specified program step depending on the condition of certain bits in the
status register. Recall in Figure 3-19 that the status bits were identified and that the
((equals bit" — bit 2 — was going to be used to change the time delay sequence.
Therefore, the decision block in the program is really asking, "Is bit 2 of the status
register set to a "1"?"

The status bit 2 is set to 1 by the program step before the decision block in Figure
3-27 — the decrement step. An instruction Decrement (by One) causes a named file
register to have one subtracted from its contents, comparison of the result to zero and the
setting of the appropriate status bits (0-4) of the status register. When the register
contents are equal to zero, the "equals" status bit (2) will be set to a "1".

When the status bit 2 is not set to a "1", the program must return to the
decrement instruction and subtract one again from the register. JNE (label) is the
conditional jump instruction that will be used to accomplish the loop. It is activated
by the "equals bit" being "0". The program will jump to a point ahead of the
decrement step which will be identified with an appropriate label. In the program this
label must be included with the JNE (Jump if not equa) instruction.

A similar type of conditional jump instruction is used to answer the question of the
switch in the first decision block of the WAIT subroutine. However, in this case,
Jump if Equal (JEQ (label)), with the appropriate label will be used. Now the
conditional jump will occur if the equal bit is set to a "1". Recall, this is the type
instruction previously referred to that must follow the TB instruction so that the status
bit can be examined and a decision made.

The number of steps in the decrement block is now the only remaining portion of the
subroutine which has not been discussed.

LOADING A REGISTER FOR THE TIME DELAY

Assume that the switch is "ON" in the WAIT routine. A logical "1" is the input to the
microcomputer. The TB instruction identifies the logical "1" and it sets the equals bit 2
of the status register to a "1" as previously described. The JEQ instruction jumps to a
selected (labeled) instruction which loads a selected file register with a number, 3FFF16.
As a 16 bit binary number, it is 0011 1111 1111 1111. No jump occurs in the program if the '–
switch is inputting a logical "0". The program just proceeds to the next step.

3-42 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
	

WHERE DOES THE
Getting Your Hands on a 9900 	 PROGRAM START?

Well, how does the data get loaded into the selected file register? Simply enough with a
load instruction which is one of the data transfer instructions. Load Immediate (file

register number), 3FFF 16 will tell the microcomputer to load the hexadecimal number
11•11. 3FFF16 into the selected register. What actually happens is that two memory words must

be used for this instruction. The first word provides the operation code and register
number and the second word the operand or data to be operated on. For the addressing
mode used for the Load Immediate instruction, the word following the instruction LI 3,
will contain the data to be put into register 3, 3FFF 16 . The programmer must
remember that a memory word location (PC + 2) is used for the 3FFF 16 data when the

instruction is located at PC.

Following on then, new data is placed into the same register by a new Load Immediate
instruction. For example, for a longer time delay, the file register R3 is loaded with
FFFF16 . The instruction LI 3, FFFF16 accomplishes this.

WHERE DOES THE PROGRAM START?
Most of the information is now in hand to write the program. The question is, "Where
does the program start"? Recall that when the program was entered into the
microcomputer through the microterminal, FE00 16 was chosen as the starting memory
location. How was this decided?

The first step in the decision is to determine what words are available in memory —
what addresses can be used.

1110.,

Figure 3-30 is reproduced from the TM 990/100M Users Guide. There are address
locations from 0000 16 to FFFE16 for 65,536 bytes (8-bit pieces), or 32,768 16-bit word
locations. This is commonly called the address space. Word address locations move by an
increment of 2, byte locations by 1. The incrementing of the program counter by 2 was
previously noted. This is the reason.

Recall that the TM 990/ 100M microcomputer has 256 16-bit words of RAM into
which the program is going to be placed and it also has 1024 16-bit words of ROM, or
EPROM in this case. The EPROM is the TIBUG monitor that provides the necessary
pre-programmed instructions that were referred to for accepting input and output data.

The 256 words of RAM occupy address space from FE00, 6 to FFFE16 as shown in

Figure 3-30. The EPROM address space is from 0000 16 through 07FE, 6 which is
address space that is dedicated for this purpose and not available for change by the first
encounter program. Notice that within this space are interrupt and XOP vectors. These
are of no concern at this time.

Since not all the available memory sockets are filled, address space from 0800, 6 through
FDFE16 does not have memory cells — it is unpopulated.

34

9900 FAMILY SYSTEMS DESIGN 	 3-43

BYTE 0000

BYTE 0001

FIRST

EPROM
	

1048

TMS 2708
	

WORD

1 K X 16
	

EPROM

DEDICATED
MEMORY

MEMORY
ADDRESS

0000
INTERRUPT VECTORS

003E

XOP VECTORS 0040
007E

TI BUG 10080

MONITOR
07FE

0800

INT 3,
J} WP AT FF68

2-WORD INST AT FF88

}

INT 4 ••••
WP AT FF8C
2-WORD INST AT FFAC

FBFE

FC00

USER
FDFE

AVAILABLE
RAM 	FE00

•

• .2" MEMORY

• S EXPANSION

SECOND
256

WORD
RAM

FIRST

256
WORD
RAM

FF68

FF88
FF8C

FFA
FFBO
FFFE

EPROM

TMS 2708
1 K X 16

SECOND
1048
WORD
EPROM OFFE

1000

RAM

TMS 4042-2
256 X 16

RAM
TMS 4042-2

256 X 16

FFFE 	

RESERVED 40 WORDS FOR
TIBUG MONITOR WORKSPACE
FILES AND RESTART VECTORS

AT FFFC AND FFFE

WHERE DOES THE
PROGRAM START?

A First Encounter:
Getting Your Hands on a 9900

It would seem that all the address spaces in RAM from FE00 16 to FFFE 16 are

available. However, as shown in Figure 3-30, 40 words of RAM must be reserved
for use by the TIBUG monitor and additional space is necessary for interrupts. Thus,
the available space is from FE00, 6 to FF6616.

Obviously, some analysis of the possible length of the program in number of steps must
be made, as well as some estimate of the number of file register blocks of 16
(workspaces) that will be used. This will determine whether adequate address space is
available or whether additional memory space must be populated.

The first encounter assumptions are as follows:

► 3 	1. The program will be less than 96 steps long — 96 words or 192 bytes.

2. Only one workspace will be required. (16 contiguous words)

Figure 3-30. Memory Map

3 -44 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

WRITING THE PROGRAM

On this basis, the starting address of the program is chosen as FE00 16 . The workspace
file register could have been chosen to start at 16 words away from FF66 16 . However,
since there is plenty of space, it is placed at FF20 16 , leaving the room from FE00 16 to

am, FF1E,, as the space for the program (144 words).

WRITING THE PROGRAM

Refer now to the flowchart in Figure 3-26 as the basis for writing the program. To help in
the organization of the program, a form shown in Table 3-1 will be used. Note that
it has a column for addresses, for machine code, for a label, for the assembly language
statement and for comments. Each of these columns will be filled in as needed as the
program is developed. Not all columns will have an entry when the program is complete.
The machine code will be the last column completed. Of particular importance, especially
for later references, or reference by another programmer, will be the comments column.
Keep referring to Table 3-1 after each program step to note the comments and see the
program develop.

Figure 3-26 indicates that the first step in the program is to be an initializing statement.
The location of the file register (workspace) used must be identified by loading the
workspace pointer with the address FF20 16 . The program must at all times know where
the file registers are in memory for it will use these registers for obtaining data or
addresses.

Reference to Chapter 5 and 6 shows there is a load instruction for the workspace
pointer, LWPI, Load Workspace Pointer Immediate. Recall that the immediate
addressing requires two words. Therefore, Step 1 of the program at address FE00 16 is
shown as:

Step 	A 	MC 	L 	rISSY LANG.
1 	FE00 	 LWPI > FF20

and Step 2 has the operand to be loaded. The greater than (>) sign identifies the data as
hexadecimal.

The program must be able to branch to the subroutine WAIT when that routine is
called by the program. Therefore, the starting address of the WAIT subroutine must be
loaded into a file register which then will be referenced when the address is needed. Step
3 of the program accomplishes this with a Load Immediate instruction and register 1 is
chosen to hold the address. Note that the program address is incrementing by two. Step
3 is:

Step 	A 	MC 	L 	ASS Y. LANG
3 	FE04 	 LI 1,> XXXX

31

9900 FAMILY SYSTEMS DESIGN 	 3-45

WAIT SUBROUTINE CALL A First Encounter:
Getting Your Hands on a 9900

Note that the specific address cannot be put in at this time — not until the location is
known. Step 4 is the step for loading the operand.

Recall that a reference needs to be established for the particular 9901 I/O interface unit
to be used by the microcomputer. This was referred to as the CRU base address for the
chosen 9901. Register 12 of the file register is the one that must contain the CRU base
address, therefore, it must be loaded with 0120 16 , the software base address of the 9901 in
the TM990/100M microcomputer. Step 5 of the program is for this purpose.

Step 	fl 	MC 	L 	ifs-sy. Lang.
5 	FE08 	 LI 12, >0120

Again Step 6 must be added because of the immediate addressing.

All initial conditions are now complete and the flowchart now moves to the start of the
light sequence. Light #1 must be turned on. Recall from Figure 3-25 that light # 1 is
connected to I/O output 0 (P 0). Therefore, I/0-0 on the 9901 must be set to a "1". This
is accomplished with the SBO instruction of Step 7. Recall, this instruction was
previously discussed in detail. Step 7 looks like this:

Step 	 MC 	L 	il.ssy. Lang.
7 	FEOC 	 BEGIN 	SBO 0

Note that this instruction is labeled BEGIN. This is done because the program will
jump back to this address location after the complete sequence of the first encounter task
is completed. The label BEGIN provides an easy reference to this location.

WAIT SUBROUTINE CALL

The first encounter task as defined now requires the light # 1 be held on for the time
delay represented by the subroutine WAIT. Therefore, the program must be directed
to the first address of the subroutine. This first address is contained in the file register 1
(workspace register 1) because Step 3 and Step 4 accomplished this.

Recall the discussion on the WAIT subroutine (Figure 3-28). The main program must be
directed to the subroutine (the main program "calls" the subroutine) but it must also
remember where it is in the main program so it can return to the correct location. The
Branch and Link to register 1 of Step 8 accomplishes this.

Step 	 MC 	L 	ilssy. Lang.
8 	FEOE 	 BL *1

■ 3

3-46 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

RETURN FROM
WAIT SUBROUTINE

At the same time the address of the next step in the program, Step 9 is being saved in
register 11.

However, note that there is a new symbol in the assembly language instruction. The
asterisk (*) means that an indirect addressing mode is used. That means that file register
1 (WR1) does not contain operand information but contains the address of an operand to
be used for further processing. That is exactly what has been put into register 1 — the
address of the first instruction of the WAIT subroutine. Therefore, an indirect
addressing mode is used.

Why is that important? When the machine code for an instruction is constructed a little
later (this will be done by hand but normally it would be done by a computer under
control of a program called an assembler), an identifying code for the addressing mode
must be used in the format for each instruction.

Figure 3-31 shows how the 16 bits of the machine code are arranged for the various
types of instructions. Much more discussion of these formats is contained in Chapters S and
6. For the purpose here, format 6 is the one of particular interest for the Branch and Link
instruction. Note that for format 6 the first 10 bits are for the operation code, bits 10 and
11 are a T S field, and bits 12 thru 15 are an S field for identifying the address of the source
information. Note that the code for T S defines the addressing mode for the instruction. 01
will be entered in this field for bits 10 and 11 for the Branch and Link instruction because
this is the code for indirect addressing. 0001 will be the code for the S field because register
1 contains the source address.

RETURN FROM WAIT SUBROUTINE

The end of the subroutine will return the microcomputer to the main program at Step 9
because this is the address saved in register 11. Step 9, according to the flowchart of
Figure 3-26, must now turn light # 1 off. The instruction is:

Step 	1 	MC L 4ssy. Lang.
9 	FE10 	 SBZ 0

Since I/O port 0 was set to a "1" in order to turn the light on, now it is set to a "0" to

^. turn the light o$:

Time delay subroutine WAIT is called for again for the next step and again the Branch
and Link instruction is used. Thus, Step 10 is:

Step 	1 	MC L .4ssy. Lang.
10 	FE 12 	 BL *1

3i

9900 FAMILY SYSTEMS DESIGN 	 3-47

WAIT SUBROUTINE A First Encounter:
Getting Your Hands on a 9900

Upon return from the WAIT subroutine light #2 is turned on, the WAIT routine
occurs, light #2 is turned off, the WAIT routine occurs and the process continues until
light # 4 is turned off and the time delay is complete. These steps are shown in Table 3-1
and carry the program through Step 22.

The program will return to Step 23 after the time delay. The flowchart indicates a return
to the beginning of the sequence. Recall that this was labeled BEGIN. Therefore, Step 23
is a jump instruction that jumps the program back to the address of the instruction

labeled BEGIN. The assembly language instruction is simple enough:

Step 	fl 	MC L 	flssy. Lang.
23 	FE2C 	 JMP BEGIN

This instruction is called an unconditional jump instruction because there are no
decisions involved — just the direction to "go to" a specified place. There is no return
instruction address saved in register 11 and no testing of status bits.

All the program steps in the flowchart of Figure 3-26 are now complete. What remains is
to define the steps in the subroutine WAIT. Figure 3-27 is used for this purpose.

WAIT SUBROUTINE

The address at Step 24, FE2E16 , is the one that must be loaded into register 1 at Step 3
because it is the first instruction of the subroutine. The flowchart identifies this step as a
decision block. Is the switch on for a logical "1" or is it off for a logical "0"?
The input line must be tested to determine this. A TB instruction, examining I/O pin
P4 , is used for this purpose. This instruction is Step 24•

Step 	fl 	MC 	L 	ilss1,. Lang.
24 	FE2E 	 TB 4

This is the Test Bit instruction discussed previously. Recall that when the input line is
tested by the instruction it sets the "equals" bit, bit 2 of the status register to the value
of the input.

In order to make the decision called for in the flowchart, an instruction that examines bit
2 of the status register must follow. This will be a conditional jump instruction because if
the status bit is a "1", the time delay is to be the shortest and the sequence fast.
Correspondingly, the sequence would be slow and the time delay long for a status bit 2
of "0". Chapters 5 and 6 identify the jump instructions. JEQ is the one selected which
says that the program will jump to a new location if the "equals" bit is set to a "1",
otherwise, the program will continue on to the next step. The instruction is:

3-48 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900 WAIT SUBROUTINE

Step 	A 	MC L Assy. Lang.
25 FE30 	 JEQ TIME

Convenient labels have been placed on the flowchart of Figure 3-27. The branch jumped
to in Step 25 is labeled TIME. This branch will be executed in a moment. For now,
assume that the "equals" bit is set to "0" and the program continues. The next step is to
load a register so that it can be decremented to produce the time delay. In this branch,
this must be the largest value for the longest delay and the slowest sequence. Another
file register must be selected. Register 3 is chosen and the load instruction is as follows:

Step 	A 	MC L 	Assy. Lang.
26 	FE32 	 LI 3, >FFFF

This is the same as previous Load Immediate instructions and another word must be
allowed for the value to be loaded. Thus, Step 27 at FE34.

One must now be subtracted from the value. There is an instruction called Decrement
(by one) and, of course, it must tell what value to be decremented. In this case, the
contents of R3. Thus, Step 28 is:

Step 	A 	MC 	L 	Assy. Lang.

	

28 FE3 	 TIME1 	DEC 3

The flowchart shows the decrement as an operation. In addition, as mentioned
previously, the value in register 3 is compared to zero and the greater than, equal, carry or
overflow status bits are set accordingly. This is found in the discussion on the
instructions in Chapter 5 and 6.

The decision that follows is made on the basis again of examining the "equals" bit. The
flow chart shows that if the "equals" bit is not set, the program will loop back and be
decremented again as previously discussed. Therefore, a label, TIME 1, is placed on the
instruction at FE36 to tell the program the location of the jump.

The jump occurs this time if the "equals" bit is not set, using the instruction Jump if
Not Equal, and looks like:

Step 	A 	MC L 	Assy. Lang.
29 FE38 	 JNE TIME1

31

9900 FAMILY SYSTEMS DESIGN 	 3-49

■ 3

WAIT SUBROUTINE A First Encounter:
Getting Your Hands on a 9900

When the file register has been decremented to zero, the equals bit will be set and the
program is ready to return to the main program. Recall that register 11 contains the
address (location) for the return. The branch instruction used for the return is Branch
and Step 30 is:

	

Step 	fI 	MC L flssy. Lang.

	

30 	FE3A 	 B *11

Note this again is an indirect addressing mode.

TIME BRANCH

The only remaining portion of the flowchart that must be programmed is the TIME
branch.

In this branch, the time delay is shorter to make the sequence faster. R3, the same
register, is loaded with a smaller value, 3FFF 16 . Again a Load Immediate instruction
shown in Step 31 is used.

	

Step 	A 	MC L 	/Issy. Lang.

	

31 	FE3C 	TIME LI3, > 3FFF
,•■■•■, .

This step is labeled with TIME, and will be the location jumped to from Step 25. Step 32
is the extra word required.

The register must again be decremented, therefore, the instruction is the same type as
Step 28. However, the label for the location to jump to is now TIME2. Step 33 is:

Step 	fl 	MC 	L 	Assy. Lang.
33 	FE40 	 TIME2 	DEC 3

The same jump instruction is used in this branch as for Step 29 except the label is now
TIME 2. Therefore, Step 34 is:

Step 	/1 	MC L 	flay. Lang.
34 	FE42 	 JNE TIME2

When the equals bit is set, the program must return to the main program as with
the other branch. The same return instruction as Step 30 is used, as shown in Step 35.

Step 	/I 	MC 	L 	/Issy. Lang.
35 	FE44 	 B *11

The total program is now complete in assembly language. It is shown in Table 3-1.

3 -50 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
	

TABLE 3-1
Getting Your Hands on a 9900 	

ASSEMBLY LANGUAGE PROGRAM

Table 3-1. ilssembly Language Program.

(Source Code Statements)

Step
Hex

Address

Hex
Machine

Code Label
Op

Code Operand Comments.

1. FE00 LWPI > FF20 Load workspace pointer
2. FE02 with FF20, 6
3. FE04 LI 1, >FF2E Load R1
4. FE06 with 1st Address of WAIT
5. FE08 LI 12, >0102 Load R12
6. FEOA with base address of 9901, 0120, 6
7. FEOC BEGIN SBO 0 Set I/O P. (segment f) equal to one
8. FEOE BL *1 Branch to address in R1 (saves

next address in R11)
9. FE10 SBZ 0 Set I/O P o (segment f) equal to zero

10. FE12 BL *1 Branch to address in R1 (saves
next address in R11)

11. FE14 SBO 1 Set I/O P, (segment b) equal to one
12. FE16 BL *1 Branch to address in R1
13. FE18 SBZ 1 Set I/O P, equal to zero
14. FE1A BL "1 Branch to address in R1
15. FE1 C SBO 2 Set I/O P, (segment e) equal to one
16. FE1 E BL *1 Branch to address in R1
17. FE20 SBZ 2 Set I/O P, equal to zero
18. FE22 BL 1 Branch to address in R1
19. FE24 SBO 3 Set I/O P, (segment c) equal to one
20. FE26 BL *1 Branch to address in R1
21. FE28 SBZ 3 Set I/O P, to equal to zero
22. FE2A BL *1 Branch to address in R1
23. FE2C JMP BEGIN Jump to BEGIN
24. FE2E WAIT TB 4 Test I/O P, for a "1" or a "0"
25. FE30 JEQ TIME If equals bit is set ("1"), jump to TIME
26. FE32 LI 3, >FFFF Load R3
27. FE34 with FFFF,,
28. FE36 TIME1 DEC 3 Decrement R3
29. FE38 JNE TIME1 Jump to TIME 1 if equals bit is not set
30. FE3A B *11 Return to main program (by way of R11)
31. FE3C TIME LI 3, >3FFF Load R3
32. FE3E with 3PFF1,
33. FE40 TIME2 DEC 3 Decrement R3
34. FE42 JNE TIME2 Jump to TIME 2 if equals bit is not set
35. FE44 B *11 Return to main program (by way of R11)

31

9900 FAMILY SYSTEMS DESIGN 3-51

WRITING
	

A First Encounter:

THE MACHINE CODE
	 Getting Your Hands on a 9900

WRITING THE MACHINE CODE

Normally the next step in programming (shown in Table 3-2) would be done by
a computer as mentioned previously. However, in order to demonstrate what an
Assembler Program would do and because the program input to the TM990/ 100M
microcomputer is thrOugh the microterminal, which requires the machine code, it will be
a good exercise to demonstrate how to develop the machine code. If this is of no interest,
this portion of the discussion can be bypassed and a jump made to the summary.

As mentioned previously in Figure 3-31, there is a set format for the 16 bits of machine
code that must be generated for each instruction. The formats used for the first

■ 3 encounter task are shown in Figure 3-32 for reference. Each instruction has an operation
code (OP CODE) and then additional information is required in the various fields of the
format. A complete discussion of the format for each instruction can be found in Chapter
6. Figure 3-33 lists the instructions used in the first encounter.

The same programming form will be used as before which is summarized to this point in
Table 3-1. The machine code will be filled in and several other changes made and the
result will be the final program of Table 3-2. As before, continue to refer to Table 3-2 as
the machine code is developed.

IMMEDIATE INSTRUCTIONS

The coding begins at Step 1. LWPI is an immediate instruction. Therefore, the format 8
of Figure 3-32 is used. There are two words to this instruction; the second one containing
the immediate value to be loaded. In the first word, the op code occupies bits 0 through
10; register numbers, where the immediate value is going to be placed, occupy bits 12
thru 15. Bit 11 is not used. The op code is obtained from Figure 3-33 for the LWPI
instruction. The filled out instruction would look like this.

0 1 2 314 5 6 718 9 10 11112 13 14 15
Binary — 0000 0010 111 0 0 0 0 0
Op Code — 	0 	2 	E 	0
Machine — 	0 	2 	E 	0

Code

LWPI is a special case of format 8. Bits 11-15 are not used and as such could contain
anything. They are don't care conditions. Therefore, the machine code is 02E0. This
is entered into Table 3-2 on the same line as LWPI as Step I. Step 2 is the immediate
value FF20, therefore, the machine code is FF2016.

3-52 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

WRITING
THE MACHINE CODE

FORMAT (USE)

0 	1 	2
	

3 1 4 1 5 1 6 1 7 1 8 1 9 110111 112113114115
1 (ARITH)
2 (JUMP)

3 (LOGICAL)

4 (CRU)
5 (SHIFT)
6 (PROGRAM)

7 (CONTROL)
8 (IMMEDIATE)

9 (MPY, DIV,XOP)

OP CODE I B I T r, 	I D 	I 	T, 	I 	S

OP CODE I 	SIGNED DISPLACEMENT'
OP D 	 T 	 S
OP C 	 Ts 	 S

OP CODE I 	C 	 W
OP CODE I 	Ts 	I 	S
OP CODE NOT USED

OP CODE 1NU I 	W
. IATE VALUE

OP CODE i D 	I 	T s 	I 	S

3
KEY

B = BYTE INDICATOR

(1 = BYTE, 0 = WORD)
To = D ADDR. MODIFICATION

D = DESTINATION ADDR.

Ts = S ADDR. MODIFICATION

SE SOURCE ADDR
C = XFR OR SHIFT LENGTH (COUNT)

W =WORKSPACE REGISTER NO.

" = SIGNED DISPLACEMENT OF — 128 TO + 127 WORDS

NU = NOT USED

Figure 3-31. Instruction Formats

FORMAT

2
(JUMP)

6
(PROGRAM)

8
(IMMEDIATE)

I 0 1 2 31 4 5 6 718 9 10 11 112 13 14 15 1

Op Code —.I 	Signed Displacement

Op Code .J Ts 	S

h— Op Code

	

IMMEDIATE VALUE 	

CODES FORTS FIELD 	ADDRESSING MODE

	

00 	 REGISTER

	

01 	 INDIRECT

	

10 	 INDEXED (S OR D 0)

	

10 	 SYMBOLIC (DIRECT, S OR D =0)

	

11 	 INDIRECT WITH AUTO INCREMENT

NOTES:

T, = SOURCE ADDRESS MODIFICATION
S = SOURCE ADDRESS
W = WORKSPACE (FILE) REGISTER NO.
NU = NOT USED

SIGNED DISPLACEMENT CAN BE
— 128 TO 127 WORDS

Figure 3-32. Formats used for First Encounter

9900 FAMILY SYSTEMS DESIGN 	 3-53

WRITING
THE MACHINE CODE

A First Encounter:
Getting Your Hands on a 9900

In like fashion, the instructions at Step 3 and Step 5 are immediate instructions, use the
same format, and are coded with the appropriate register numbers. Step 4 and Step 6 are
the immediate values to be loaded.

Note, however, that when the program was first prepared, the first address of the
WAIT subroutine was not known. Now, it is known. It is substituted for the XXXX in
Table 3-1 at Step 3. Thus, the address of Step 24, FE2E is placed after the "greater than"
symbol.

The op code for LI is 0200 16 and since register 1 is used for Step 3, the machine code is
0201 16 while for Step 5 it is 020C because register 12 is being loaded. The machine code
for Step 4 is the value FE2E 16 and for Step 6 it is 012016.

INSTRUCTIONS SBO, SBZ

The instruction SBO at Step 7 uses a different format. This is format 2 in Figure 3-32. It
has the op code in bits 0 through 7 and the signed displacement that was discussed
previously when the 9901 I/O unit program was examined. Recall that the CRU base
address was arranged so that the bit number is the value that is put in for the signed
displacement.

The op code for SBO from Figure 3-33 is 1D0016 and with the first bit being zero, the
machine code is:

0123145671891011(121314151
Binary — 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0
Op Code — 	1 	D 	0 	0
Machine — 	1 	D 	0 	0

Code

MNEMONIC
HEX

OP CODE FORMAT
RESULT COMPARE

TO ZERO INSTRUCTION

LWPI 02E0 8 N LOAD IMMEDIATE TO WORKSPACE POINTER

LI 0200 8 N LOAD IMMEDIATE

BL 0680 6 N BRANCH AND LINK (WR11)

B 0440 6 N BRANCH

DEC 0600 6 Y DECREMENT (BY ONE)

SBO 1 D00 2 N SET CRU BIT TO ONE

SBZ 1E00 2 N SET CRU BIT TO ZERO

TB 1F00 2 N TEST CRU BIT

JE0 1300 2 N JUMP EQUAL (ST2 = 1)

JMP 1000 2 N JUMP UNCONDITIONAL

JNE 1 600 2 N JUMP NOT EQUAL (ST2 = 0)

Figure 3-33. Instructions used for First Encounter.

3-54 	 9900 FAMILY SYSTEMS DESIGN

2
(JUMP)

6
(PROGRAM)

8
(IMMEDIATE)

Op Code Signed Displacement

Op Code 	 I T s 	S

Op Code

	

IMMEDIATE VALUE 	

A First Encounter:
Getting Your Hands on a 9900

WRITING
THE MACHINE CODE

FORMAT (USE)

2
	

3
	

4
	

5
	

6 1 7 1 8
	

9 110111 112 113 114 115
1 (ARITH)
2 (JUMP)

3 (LOGICAL)

4 (CRU)
5 (SHIFT)

6 (PROGRAM)
7 (CONTROL)
8 (IMMEDIATE)

9 (MPY, DIV,X0P)

OP CODE 	P 1 To 	1 	D 	I Ts 	1 S
OP C I 	SIGNED DISPLACEMENT*
OF D Ts S
OF C T s S

OF L 	C W
OF ,. Ts S

OP CAJLJ, NOT USED

OP CODE INUI W
IMMEDIATE VALUE

OP CODE D 	I Ts 	I

31
KEY

B = BYTE INDICATOR

(1 = BYTE, 0 =WORD)
To = D ADDR. MODIFICATION

D= DESTINATION ADDR.
Ts = S ADDR. MODIFICATION

S= SOURCE ADDR
C = XFR OR SHIFT LENGTH (COUNT)

W = WORKSPACE REGISTER NO.

= SIGNED DISPLACEMENT OF —128 TO +127 WORDS
NU = NOT USED

Figure 3-31. Instruction Formats

FORMAT 	1 0 1 2 31 4 5 6 7 1 8 9 10 11 112 13 14 15 1

.411111011k

NOTES:

Ts = SOURCE ADDRESS MODIFICATION
S = SOURCE ADDRESS
W = WORKSPACE (FILE) REGISTER NO.
NU = NOT USED

SIGNED DISPLACEMENT CAN BE
—128 TO + 127 WORDS

CODES FORTS FIELD 	ADDRESSING MODE

00 	 REGISTER
01 	 INDIRECT
10 	 INDEXED (S OR D 0)

10 	 SYMBOLIC (DIRECT, S OR D = 0)
11 	 INDIRECT WITH AUTO INCREMENT

Figure 3-32. Formats used for First Encounter

9900 FAMILY SYSTEMS DESIGN 	 3-53

WRITING
THE MACHINE CODE

A First Encounter:
Getting Your Hands on a 9900

3

In like fashion, the instructions at Step 3 and Step 5 are immediate instructions, use the
same format, and are coded with the appropriate register numbers. Step 4 and Step 6 are
the immediate values to be loaded.

Note, however, that when the program was first prepared, the first address of the
WAIT subroutine was not known. Now, it is known. It is substituted for the XXXX in
Table 3-1 at Step 3. Thus, the address of Step 24, FE2E is placed after the "greater than"
symbol.

The op code for LI is 0200 16 and since register 1 is used for Step 3, the machine code is
0201 16 while for Step 5 it is 020C because register 12 is being loaded. The machine code
for Step 4 is the value FE2E 16 and for Step 6 it is 012016.

INSTRUCTIONS SBO, SBZ

The instruction SBO at Step 7 uses a different format. This is format 2 in Figure 3-32. It
has the op code in bits 0 through 7 and the signed displacement that was discussed
previously when the 99011/0 unit program was examined. Recall that the CRU base
address was arranged so that the bit number is the value that is put in for the signed
displacement.

The op code for SBO from Figure 3-33 is 1D0016 and with the first bit being zero, the
machine code is:

0 1 2 314 5 6 718 9 10 11112 13 14 151
Binary — 0001 1101 000 0 0 0 0 0
Op Code — 	1 	D 	0 	0
Machine 	1 	D 	0 	0

Code

MNEMONIC
HEX

OP CODE FORMAT
RESULT COMPARE

TO ZERO INSTRUCTION

LWPI 02E0 8 N LOAD IMMEDIATE TO WORKSPACE POINTER

LI 0200 8 N LOAD IMMEDIATE

BL 0680 6 N BRANCH AND LINK (WR11)

B 0440 6 N BRANCH

DEC 0600 6 Y DECREMENT (BY ONE)

SBO 1D00 2 N SET CRU BIT TO ONE

SBZ 1 E00 2 N SET CRU BIT TO ZERO

TB 1 F00 2 N TEST CRU BIT

JEQ 1300 2 N JUMP EQUAL (ST2 = 1)

J MP 1000 2 N JUMP UNCONDITIONAL

JNE 1600 2 N JUMP NOT EQUAL (ST2 = 0)

Figure 3-33. Instructions used for First Encounter.

3-54 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

WRITING
THE MACHINE CODE

The other SBO instructions can be machine coded accordingly using the appropriate bit
number. Therefore, Step 11 is 1D01 16 , Step 15 is 1D02 16 and Step 19 is 1D0316.

Similarly, using the op code of 1E00 16 for the SBZ instructions and the appropriate bit
number, Step 9 is 1E0016 , Step 13 is 1E01 16 , Step 17 is 1E0216 , and Step 21 is 1E03 16 .

INSTRUCTION BL

Now Step 8 brings in another new format. For the BL instruction, it is format 6. Bits 0
thru 9 contain the op code. Bits 12 through 15 are the address of the source data. Ts is a
field that modifies the source address and it contains the two bits that code the
addressing mode that is being used. Recall BL *1 uses indirect addressing. Therefore,
from Figure 3-32 Ts would be 01 for these 2 bits. It's important to remember that this
modifies the op code into a different number for the machine code as shown below.

0 1 2 314 5 6 718 9 10 11112 13 14 15

Op Code 	0 	6 	8 	 0
Binary 	0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
T, 	 0 1
S 	— 	 0 0 0 1
Machine 	0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1
Code—
(Binary)

Machine 	0 	6 	9 	 1
Code—
(Hex)

Thus, the machine code is 0691 16 and can be placed in Step 8, 10, 12, 14, 16, 18, 20 and
22, since register 1 is used in each case.

MISCELLANEOUS INSTRUCTIONS

Because the jump instructions fall into a class that needs special discussion, the remaining
instructions will be coded first.

Step 26 and Step 31 are LI instructions like Step 3 and Step 5 — the code is
Aft, 0203 16 in this case because register 3 is being used. Don't forget the values of FFFF 16

 for Step 27 and 3FFF 16 for Step 32.

The TB instruction has an op code of 1F00 16 and a format 2. It is just like the SBO and
SBZ so that the bit must be used for the displacement. Bit 4 causes a displacement of 4,
therefore, the machine code is 1F04 16 . This is Step 24.

41111,

34

9900 FAMILY SYSTEMS DESIGN 	 3-55

WRITING
	

A First Encounter:

THE MACHINE CODE
	 Getting Your Hands on a 9900

3

A branch instruction similar to BL, but does not save the next address in register 11, is
the instruction B. It is using the contents of register 11 for a return to the main
program. The op code for B is 0440 16 . It uses an indirect addressing mode so T s = 01
and S is 1011 for register 11. The machine code results as follows:

0 1 2 3 4 5 6 7 !8 9 10 11112 13 14 151

Op Code 0 4 4 0
0 0 0 0 0 1 0 0 0 1 	0 0 	0 0 0 0

Ts 0 1
S 	— 1 0 1 1
Machine 	— 	0 0 0 0 0 1 0 0 0 1 	0 1 	1 0 1 1
Code
(Binary)
Machine 0 4 5
Code
(Hex)

It is entered at Step 30 and 35.

The only remaining instruction besides the jump instructions is the decrement
instruction DEC. From Figure 3-33 the op code is 0600 16 and the format is 6. Register 3 is
being used, therefore, S is 0011. The addressing mode is a register mode so T s is 00 and
there is no modification of the op code. The machine code is then 0603 16 for Step 28 and 33.

JUMP INSTRUCTIONS

Jump instructions use format 2 of Figure 3-32 which has an op code for bits 0 through 7
and a signed displacement in bits 8 through 15. The signed displacement means the
number of program addresses that the program must move to arrive at the required
address. For example, let

= present address of jump instruction
At, = destination address of jump instruction

then,

1.) A j + 2 DISP = AD

since the program moves by increments of 2.

However, for the 9900 microprocessor in the TM990/ 100M microcomputer, the jump
instruction signed displacement must be calculated from the address following the
address of the jump instruction or A J + 2. Therefore, equation (1) becomes,

2.) (A, + 2) + 2 DISP = AD

Solving for DISP, gives
3.) AD —

	

	+ 2) = DISP
2

3-56 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
	

WRITING
Getting Your Hands on a 9900 	

THE MACHINE CODE

1.111.,

Recall that in preparing the program of Table 3-1 labels were used for instructions so that
easy reference could be made to the desired destination address for a jump instruction.
Step 23 at FE2C16 is the first jump instruction. The destination is the label BEGIN
which is located at address FEOC 16 . Applying equation (3) gives (in Hex)

4.) DISP = FEOC — (FE2C + 2)
2

5.) DISP = FEOC — FE2E
2

Now,
FEOC

—FE2E
— 0022 16

Therefore,

6.) DISP = — 22 = — 1116
2

This means that in the jump instruction the program moves back 11 16 steps or 17
decimal steps.

Now, since this is a negative number, a two's complement must be used for the code,
thus

—0011
COMPLEMENT 	FFEE
ADD ONE 	+0001

2'S COMPLEMENT 	FFEF

Now, only the 8 least significant bits are used along with the op code of Figure 3-33.
JMP of Step 23 has an op code of 1000 16 . Therefore, the machine code is:

0 1 2 314 5 6 718 9 10 11112 13 14 151

Op Code 	1 	0 	0
	

0
Displacement — 	 E

	
F

Machine 	1 	0
Code

This machine code is entered at Step 23.

34

9900 FAMILY SYSTEMS DESIGN 	 3-57

WRITING
	

A First Encounter:

THE MACHINE CODE
	

Getting Your Hands on a 9900

Step 25 has a JEQ instruction. Aj is FE3016 . The instruction says to jump to TIME
which has an address of FE3C at Step 31, therefore, A D = FE3C. Applying equation (3)
gives, again in hexadecimal;

FE3C — FE32 	10
DISP — 2 	— 2 — 516

JEQ has an op code of 1300 and the machine code then becomes:

0 1 2 314 5 6 718 9 10 11112 13 14 151
Op Code 	— 	1 3 0 0
Displacement — 0 5
Machine Code— 	1 3 0 5

Step 25 then has 1305 as the machine code.

The remaining jump instructions, JNE at Steps 29 and 34 have an op code of 160016.
Calculating the displacement from Step 29 to Step 28 and from Step 34 to Step 33,
obviously is — 02 16 . The complement of — 02 is FFFD and the twos complement is
FFFE. Thus the machine code is:

0 1 2 314 5 6 718 9 10 11112 13 14 15 1
Op Code 	— 1 	6 	0 	0 	-
Displacement — 	 F 	E
Machine Code— 1 	6 	F 	E

Even though the labels jumped to for Steps 29 and 34 are different, the displacement is
the same and, therefore, the machine code entered at these steps is the same, 16FE..

■ 3

3 -58 	 9900 FAMILY SYSTEMS DESIGN

A First Encounter:
Getting Your Hands on a 9900

SUMMARY

TABLE 3-2

Every step is now coded and the program is complete. This is the program that was
entered into the microcomputer via the terminal to accomplish the first encounter task.

Only one comment remains. If the Table 3-1 program were run on a computer under the
direction of an assembler program, certain symbols used for directives to the assembler
would have to be used. The $ symbol could have been used to indicate the fact that a
displacement is to be made from the jump instruction address which was identified in
equation (3) as A J . The instruction then would contain the $ symbol followed by the
necessary displacement in hexadecimal. For this reason the instructions at Step 23, 25,
29, and 34 would have looked as follows:

Step 	fl 	MC 	L 	ilssy. Lang.
23 	FE2C 	10EF 	 JMP 8-17
25 	FE30 	1305 	 JEQ $ + 5
29 	FE38 	16FE 	 JNE $ — 2
34 	FE42 	16FE 	 JNE $ — 2

SUMMARY

It has been a long discussion. However, a great deal of material has been covered and
.... many basic concepts developed. The facts and procedures presented should provide a

solid foundation for expanding an understanding of the 9900 Family of microprocessors and
microcomputer component peripherals and the microcomputers which use it. Hopefully,
enough examples have been presented with the first encounter task that with a minimum
of effort, new real applications of the TM990/ 100M board can be implemented. A few
simple ones that can be implemented immediately with the present setup would be:

A. Wire-up the necessary drivers and resistors to drive all seven-segments of
the display and write a new program to make the numbers 1, 2, 3, 4, 5,
6, 7, 8, 9, 0 come up in sequence.

B. Write a program that uses the 7 segment display numbers so that they
spell a word when read up-side down.

Maybe more memory will be required, but that is easy to add to the TM990/ 100M.

The next step is to implement the logic levels at the output pins into real applications of
controlling dc and ac voltages for control applications. An extended application in
Chapter 9 using this same TM990/ 100M board setup shows how this can be done.
Persons interested can follow right into this application example to gain more insight
into the details of the 9900 family of components explained in detail in the following
chapters.

31

9900 FAMILY SYSTEMS DESIGN 	 3-59

TABLE 3 -2:
ASSEMBLY LANGUAGE PROGRAM

Table 3-2 ilssembly Language Program.

(With Machine Code)

Step
Hex

Address

Hex
Machine

Code Label
Op

Code Operand Comments.

r
N

 C
7
4

 u
7
i Q

5
 N

.:
05 C

A
O

 	
06

4
 N

C
O

h.:

(56
C
A
 O
r
N
 0
7
4
 u
i

C
O
 0
6
 6
 O
r
 C\i CO

4
 u
5

	

c
y
 cy
 CV CV CV CV

C
V
 CV
 CV
 CV
 C
O
 C
O
 CO

C
O
 C
O
 CO

•
FE00 02E0 LWPI >FF20 Load workspace pointer
FE02 FF20 with FF20, 6
FE04 0201 LI 1, >FE2E Load R1
FE06 FE2E with 1st address of WAIT
FE08 020C LI 12, >0102 Load 12
FEOA 0120 Will base address of 9901, 0120,,
FEOC 1 D00 BEGIN SBO 0 Set I/O P o (segment f) equal to one
FEOE 0691 BL *1 Branch to address in R1, (saves

next address in R11)
FE10 1 E00 SBZ 0 Set I/O Po (segment f) equal to zero
FE12 0691 BL *1 Branch to address in R1

(saves next address in R11)
FE14 1D01 SBO 1 Set I/O P, (segment b) equal to one
FE16 0691 BL *1 Branch to address in R1
FE18 1 E01 SBZ 1 Set I/O P, equal to zero
FE1A 0691 BL *1 Branch to address in R1
FE1 C 1 D02 SBO 2 Set I/O P, (segment e) to one
FE1 E 0691 BL *1 Branch to address in R1
FE20 1 E02 SBZ 2 Set I/O P, equal to zero
FE22 0691 BL *1 Branch to address in R1
FE24 1 D03 SBO 3 Set I/O P, (segment c) equal to one
FE26 0691 BL *1 Branch to address in R1
FE28 1 E03 SBZ 3 Set I/O P, equal to zero
FE2A 0691 BL ' 1 Branch to address in R1
FE2C 10EF JMP BEGIN Jump to BEGIN
FE2E 1 F04 WAIT TB 4 Test I/O P, for a "1" or a "0"
FE30 1305 JEQ TIME If equals bit is set ("1"), jump to TIME
FE32 0203 LI 3, >FFFF Load R3
FE34 FFFF with FFFF„
FE36 0603 TIME 1 DEC 3 Decrement R3
FE38 16FE JNE TIME1 Jump to TIME1 if equals bit is not set
FE3A 045B B *11 Return to main program (by way of 11)
FE3C 0203 TIME LI 3, >3FFF Load R3
FE3E 3FFF with 3FFF„
FE40 0603 TIME 2 DEC 3 Decrement R3
FE42 16FE JNE TIME2 Jump to TIME2 if equals bit is not set
FE44 045B B *11 Return to main program (by way of R11)

3-60
	

9900 FAMILY SYSTEMS DESIGN

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60

